GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-04-26
    Beschreibung: The sinking of particulate matter from the upper ocean dominates the export and sequestration of organic carbon by the biological pump, a critical component of the Earth's carbon cycle. Controls on carbon export are thought to be driven by ecological processes that produce and repackage sinking biogenic particles. Here, we present observations during the demise of the Northeast Atlantic Ocean spring bloom illustrating the importance of storm-induced turbulence on the dynamics of sinking particles. A sequence of four large storms caused upper layer mean turbulence levels to vary by more than three orders of magnitude. Large particle (>0.1 to 10 mm) abundance and size changed accordingly: increasing via shear coagulation when turbulence was moderate and decreasing rapidly when turbulence was intense due to shear disaggregation. Particle export was also tied to storm forcing as large particles were mixed to depth during mixed layer deepening. After the mixed layer shoaled, these particles, now isolated from intense surface mixing, grew larger and subsequently sank. This sequence of events matched the timing of sinking particle flux observations. Particle export was influenced by increases in aggregate abundance and porosity, which appeared to be enhanced by the repeated creation and destruction of aggregates. Last, particle transit efficiency through the mesopelagic zone was reduced by presumably biotic processes that created small particles (〈0.5 mm) from larger ones. Our results demonstrate that ocean turbulence significantly impacts the nature and dynamics of sinking particles, strongly influencing particle export and the efficiency of the biological pump.
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    John Wiley & Sons
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5322–5332, doi:10.1002/jgrc.20379.
    Beschreibung: By analyzing global data, we find that over large scales, surfaces of constant nitrate are often better aligned with isopycnals than with isobars, particularly below the euphotic zone. This is unexplained by the movement of isopycnal surfaces in response to eddies and internal waves, and is perhaps surprising given that the biological processes that alter nitrate distributions are largely depth dependent. We provide a theoretical framework for understanding the orientation of isonitrate surfaces in relation to isopycnals. In our model, the nitrate distribution results from the balance between depth-dependent biological processes (nitrate uptake and remineralization), and the along-isopycnal homogenization of properties by eddy fluxes (parameterized by eddy diffusivity). Where the along-isopycnal eddy diffusivity is relatively large, nitrate surfaces are better aligned with isopycnals than isobars. We test our theory by estimating the strength of the eddy diffusivity and biological export production from global satellite data sets and comparing their contributions. Indeed, we find that below the euphotic zone, the mean isonitrate surfaces are oriented along isopycnals where the isopycnal eddy diffusivity is large, and deviate where the biological export of organic matter is relatively strong. Comparison of nitrate data from profiling floats in different regions corroborates the hypothesis by showing variations in the nitrate-density relationship from one part of the ocean to another.
    Beschreibung: We acknowledge the support of the National Science Foundation (Grant OCE-0928617) and NASA (Grant NNX- 08AL80G).
    Beschreibung: 2014-04-15
    Schlagwort(e): Nitrate ; Export ; Mixing ; Isopycnal ; Alignment ; Large-scale
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Workshop held 28-29 September 2017, Cape Cod, MA
    Beschreibung: A two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances.
    Schlagwort(e): Biological pump
    Repository-Name: Woods Hole Open Access Server
    Materialart: Working Paper
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Copernicus Publications on behalf of the European Geosciences Union
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 3273-3287, doi:10.5194/bg-12-3273-2015.
    Beschreibung: In most regions of the ocean, nitrate is depleted near the surface by phytoplankton consumption and increases with depth, exhibiting a strong vertical gradient in the pycnocline (here referred to as the nitracline). The vertical supply of nutrients to the surface euphotic zone is influenced by the vertical gradient (slope) of the nitracline and by the vertical separation (depth) of the nitracline from the sunlit surface layer. Hence it is important to understand the shape (slope and curvature) and depth of the oceanic nitracline. By using density coordinates to analyze nitrate profiles from autonomous Autonomous Profiling EXplorer floats with In-Situ Ultraviolet Spectrophotometers (APEX-ISUS) and ship-based platforms (World Ocean Atlas – WOA09; Hawaii Ocean Time-series – HOT; Bermuda Atlantic Time-series Study – BATS; and California Cooperative Oceanic Fisheries Investigations – CalCOFI), we are able to eliminate much of the spatial and temporal variability in the profiles and derive robust relationships between nitrate and density. This allows us to characterize the depth, slope and curvature of the nitracline in different regions of the world's oceans. The analysis reveals distinguishing patterns in the nitracline between subtropical gyres, upwelling regions and subpolar gyres. We propose a one-dimensional, mechanistic model that relates the shape of the nitracline to the relative depths of the surface mixed layer and euphotic layer. Though heuristic, the model accounts for some of the seasonal patterns and regional differences in the nitrate–density relationships seen in the data.
    Beschreibung: We acknowledge the support of the National Science Foundation (Grant OCE-0928617) and NASA (Grant NNX-08AL80G).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 1673-1688, doi:10.4319/lo.2012.57.6.1673.
    Beschreibung: Three distinct phytoplankton blooms lasting 4–9 d were observed in approximately 15-m water depth near Huntington Beach, California, between June and October of 2006. Each bloom was preceded by a vertical NO3 flux event 6–10 d earlier. NO3 concentrations were estimated using a temperature proxy that was verified by comparison with the limited NO3 observations. The lower–water-column vertical NO3 flux from vertical advection was inferred from observed vertical isotherm displacement. Turbulent vertical eddy diffusivity was parameterized based on the observed background (〈 0.3 cycles h−1) stratification and vertical shear in the horizontal currents. The first vertical nitrate flux event in June contained both advective and turbulent fluxes, whereas the later two events were primarily turbulent, driven by shear in the lower part of the water column. The correlation between the NO3 flux and the observed chlorophyll a (Chl a) was maximum (r2 = 0.40) with an 8-d lag. A simple nitrate–phytoplankton model using a linear uptake function and driven with the NO3 flux captured the timing, magnitude, and duration of the three Chl a blooms (skill = 0.61) using optimal net growth rate parameters that were within the expected range. Vertical and horizontal advection of Chl a past the measurement site were too small to explain the observed Chl a increases during the blooms. The vertical NO3 flux was a primary control on the growth events, and estimation of both the advective (upwelled) and turbulent fluxes is necessary to best predict these episodic blooms.
    Beschreibung: California Sea Grant, National Oceanic and Atmospheric Administration, California Coastal Conservancy, National Science Foundation, and the Office of Naval Research supported this research.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © The Oceanography Society, 2016. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 29, no. 2 (2016): 222–231, doi:10.5670/oceanog.2016.54.
    Beschreibung: The Bay of Bengal (BoB) is strongly density stratified due to large freshwater input from various rivers and heavy precipitation. This strong vertical stratification, along with physical processes, regulates the transport and vertical exchange of surface and subsurface water, concentrating nutrients and intensifying the oxygen minimum zone (OMZ). Here, we use basinwide measurements to describe the spatial distributions of nutrients, oxygen, and phytoplankton within the BoB during the 2013 northeast monsoon (November–December). By the time riverine water reaches the interior bay, it is depleted in the nutrients nitrate and phosphate, but not silicate. Layering of freshwater in the northern BoB depresses isopycnals, leading to a deepening of the nutricline and oxycline. Oxygen concentrations in the OMZ are lowest in the north (〈5 µM). Weak along-isopycnal nutrient gradients reflect along-isopycnal stirring between ventilated surface water and deep nutrient-replenished water. Picoplankton dominate the phytoplankton population in the north, presumably outcompeting larger phytoplankton species due to their low nutrient requirements. Micro- and nanoplankton numbers are enhanced in regions with deeper mixed layers and weaker stratification, where nutrient replenishment from subsurface waters is more feasible. These are also the regions where marine mammals were sighted. Physical processes and the temperature-salinity structure in the BoB directly influence the OMZ and the depth of the oxycline and nutricline, thereby affecting the phytoplankton and marine mammal communities.
    Beschreibung: We would like to thank the Director, CSIR-National Institute of Oceanography, for support. CKS acknowledges CSIR/AcSIR for a research fellowship. MFB and KMS were supported by the US Office of Naval Research Marine Mammals and Biology Program.
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-10-26
    Beschreibung: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Durkin, C. A., Buesseler, K. O., Cetinic, I., Estapa, M. L., Kelly, R. P., & Omand, M. A visual tour of carbon export by sinking particles. Global Biogeochemical Cycles, 35(10), (2021): e2021GB006985, https://doi.org/10.1029/2021GB006985.
    Beschreibung: To better quantify the ocean's biological carbon pump, we resolved the diversity of sinking particles that transport carbon into the ocean's interior, their contribution to carbon export, and their attenuation with depth. Sinking particles collected in sediment trap gel layers from four distinct ocean ecosystems were imaged, measured, and classified. The size and identity of particles was used to model their contribution to particulate organic carbon (POC) flux. Measured POC fluxes were reasonably predicted by particle images. Nine particle types were identified, and most of the compositional variability was driven by the relative contribution of aggregates, long cylindrical fecal pellets, and salp fecal pellets. While particle composition varied across locations and seasons, the entire range of compositions was measured at a single well-observed location in the subarctic North Pacific over one month, across 500 m of depth. The magnitude of POC flux was not consistently associated with a dominant particle class, but particle classes did influence flux attenuation. Long fecal pellets attenuated most rapidly with depth whereas certain other classes attenuated little or not at all with depth. Small particles (〈100 μm) consistently contributed ∼5% to total POC flux in samples with higher magnitude fluxes. The relative importance of these small particle classes (spherical mini pellets, short oval fecal pellets, and dense detritus) increased in low flux environments (up to 46% of total POC flux). Imaging approaches that resolve large variations in particle composition across ocean basins, depth, and time will help to better parameterize biological carbon pump models.
    Beschreibung: This work was supported by an NSF EAGER award to C. A. Durkin (OCE-1703664), M. L. Estapa (OCE-1703422), and M. Omand (OCE-1703336), and also by the NASA EXPORTS program (80NSSC17K0662), a NASA New Investigator award to M. L. Estapa (NNX14AM01G), the Rhode Island Endeavor Program (RIEP), NASA's PACE mission, and the Schmidt Ocean Institute.
    Schlagwort(e): Biological carbon pump ; Sediment traps ; Fecal pellets ; Aggregates ; Particles ; Salp
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2023-02-17
    Beschreibung: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(3), (2021): e2020GB006764, https://doi.org/10.1029/2020GB006764
    Beschreibung: Export of Particulate Organic Carbon (POC) is mainly driven by gravitational sinking. Thus, traditionally, it is thought that larger, faster-sinking particles make up most of the POC export flux. However, this need not be the case for particles whose sinking speeds are comparable to the vertical velocities of a dynamic flow field that can influence the descent rate of particles. Particles with different settling speeds are released in two process-oriented model simulations of an upper ocean eddying flow in the Northeast Pacific to evaluate the impact of (1) ocean dynamics on the respective contribution of the different sinking-velocity classes to POC export, and (2) the particle number size-spectrum slope. The analysis reveals that the leading export mechanism changes from gravitationally driven to advectively driven as submesoscale dynamics become more active in the region. The vertical velocity associated with submesoscale dynamics enhances the contribution of slower-sinking particles to POC export flux by a factor ranging from 3 to 10, especially where the relative abundance of small particles is large (i.e., steep particle size-spectrum slope). Remineralization generally decreases the total amount of biomass exported, but its impact is weaker in dynamical regimes where submesoscale dynamics are present and export is advectively driven. In an advectively driven export regime, remineralization processes counter-intuitively enhance the role of slower-sinking particles to the point where these slower-sinking velocity classes dominate the export, therefore challenging the traditional paradigm for POC export. This study demonstrates that slow-sinking particles can be a significant contribution, and at times, even dominate the export flux.
    Beschreibung: The work was funded by NASA grant NNX16AR48 G, to complement the EXport Processes in the global Ocean from RemoTe Sensing (EXPORTS) program.
    Beschreibung: 2021-08-17
    Schlagwort(e): Export ; Flux ; Particulate organic carbon ; Sinking rates ; Submeso-scales ; Vertical velocities
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Phytoplankton Orientation - Diatom Stephanopyxis
    Beschreibung: Data from experiments on orientation of colonial diatom Stephanopyxis turris in Couette flow using hologram imagery analysis. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/809515
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1657332
    Schlagwort(e): Phytoplankton ; Orientation ; Diatom ; Holography ; Stephanopyxis turris
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Particle Flux
    Beschreibung: This dataset includes particle fluxes calculated from gel trap images. Images were collected at the New England shelf break aboard the R/V Endeavor on 3-7 November 2017 (EN572) and 13-18 June 2016 (EN581) and on a transit between Honolulu, Hawaii and Portland, Oregon aboard the R/V Falkor between 24 January-20 February, 2017 (FK170124). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847036
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1703664
    Schlagwort(e): Particle flux ; Gel trap images
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...