GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-04-26
    Beschreibung: The sinking of particulate matter from the upper ocean dominates the export and sequestration of organic carbon by the biological pump, a critical component of the Earth's carbon cycle. Controls on carbon export are thought to be driven by ecological processes that produce and repackage sinking biogenic particles. Here, we present observations during the demise of the Northeast Atlantic Ocean spring bloom illustrating the importance of storm-induced turbulence on the dynamics of sinking particles. A sequence of four large storms caused upper layer mean turbulence levels to vary by more than three orders of magnitude. Large particle (>0.1 to 10 mm) abundance and size changed accordingly: increasing via shear coagulation when turbulence was moderate and decreasing rapidly when turbulence was intense due to shear disaggregation. Particle export was also tied to storm forcing as large particles were mixed to depth during mixed layer deepening. After the mixed layer shoaled, these particles, now isolated from intense surface mixing, grew larger and subsequently sank. This sequence of events matched the timing of sinking particle flux observations. Particle export was influenced by increases in aggregate abundance and porosity, which appeared to be enhanced by the repeated creation and destruction of aggregates. Last, particle transit efficiency through the mesopelagic zone was reduced by presumably biotic processes that created small particles (〈0.5 mm) from larger ones. Our results demonstrate that ocean turbulence significantly impacts the nature and dynamics of sinking particles, strongly influencing particle export and the efficiency of the biological pump.
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1266–1282, doi:10.1002/2014GB004913.
    Beschreibung: Determinations of the net community production (NCP) in the upper ocean and the particle export production (EP) should balance over long time and large spatial scales. However, recent modeling studies suggest that a horizontal decoupling of flux-regulating processes on submesoscales (≤10 km) could lead to imbalances between individual determinations of NCP and EP. Here we sampled mixed-layer biogeochemical parameters and proxies for NCP and EP during 10, high-spatial resolution (~2 km) surface transects across strong physical gradients in the Sargasso Sea. We observed strong biogeochemical and carbon flux variability in nearly all transects. Spatial coherence among measured biogeochemical parameters within transects was common but rarely did the same parameters covary consistently across transects. Spatial variability was greater in parameters associated with higher trophic levels, such as chlorophyll in 〉5.0 µm particles, and variability in EP exceeded that of NCP in nearly all cases. Within sampling transects, coincident EP and NCP determinations were uncorrelated. However, when averaged over each transect (30 to 40 km in length), we found NCP and EP to be significantly and positively correlated (R = 0.72, p = 0.04). Transect-averaged EP determinations were slightly smaller than similar NCP values (Type-II regression slope of 0.93, standard deviation = 0.32) but not significantly different from a 1:1 relationship. The results show the importance of appropriate sampling scales when deriving carbon flux budgets from upper ocean observations.
    Beschreibung: NASA Ocean Carbon and Biogeochemistry program Grant Number: NNX11AL94G; WHOI Postdoctoral Scholar fellowship; NASA ACE Grant Number: NNX12AJ25G; NSF Grant Number: OCE-0752366
    Beschreibung: 2016-02-29
    Schlagwort(e): Submesoscale biogeochemical variability ; Export production ; Net community production ; Sargasso Sea carbon flux balance
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/msword
    Format: application/pdf
    Format: application/vnd.ms-excel
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    Copernicus Publications on behalf of the European Geosciences Union
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 5517-5531, doi:10.5194/bg-10-5517-2013.
    Beschreibung: Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers) have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Time-series Study (BATS) and Oceanic Flux Program (OFP) sites. These observations illustrate strong variability in particle flux over very short (~1-day) timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap time series. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.
    Beschreibung: M.L.E. was supported by a WHOI Postdoctoral Scholar fellowship, and the floats used in this project were funded by the above NASA grant and by ONR (DURIP, N00014-10-1-0776).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 175 (2015): 72-81, doi:10.1016/j.marchem.2015.02.011.
    Beschreibung: Carbon and nutrients are transported out of the surface ocean and sequestered at depth by sinking particles. Sinking particle sizes span many orders of magnitude and the relative influence of small particles on carbon export compared to large particles has not been resolved. To determine the influence of particle size on carbon export, the flux of both small (11–64 μm) and large (〉 64 μm) particles in the upper mesopelagic was examined during 5 cruises of the Bermuda Atlantic Time Series (BATS) in the Sargasso Sea using neutrally buoyant sediment traps mounted with tubes containing polyacrylamide gel layers and tubes containing a poisoned brine layer. Particles were also collected in surface-tethered, free-floating traps at higher carbon flux locations in the tropical and subtropical South Atlantic Ocean. Particle sizes spanning three orders of magnitude were resolved in gel samples, included sinking particles as small as 11 μm. At BATS, the number flux of small particles tended to increase with depth, whereas the number flux of large particles tended to decrease with depth. The carbon content of different sized particles could not be modeled by a single set of parameters because the particle composition varied across locations and over time. The modeled carbon flux by small particles at BATS, including all samples and depths, was 39 ± 20% of the modeled total carbon flux, and the percentage increased with depth in 4 out of the 5 months sampled. These results indicate that small particles (〈 64 μm) are actively settling in the water column and are an important contributor to carbon flux throughout the mesopelagic. Observations and models that overlook these particles will underestimate the vertical flux of organic matter in the ocean.
    Beschreibung: Funding for this study was provided by the National Science Foundation Chemical Oceanography Program (OCE-1260001 and 1406552 to M. L. Estapa) and the Woods Hole Oceanographic Institution Devonshire Postdoctoral Scholarship awarded to C. A. Durkin. Funding for the DeepDOM cruise was provided by the National Science Foundation Chemical Oceanography Program (OCE-1154320 to E. B. Kujawinski and K. Longnecker, WHOI).
    Schlagwort(e): Particle size ; Particle settling ; Carbon cycle ; Sediment traps ; Mesopelagic zone
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 97-112, doi:10.4319/lo.2012.57.1.0097.
    Beschreibung: We investigated the influences of organic content and mineralogical composition on light absorption by mostly mineral suspended particles in aquatic and coastal marine systems. Mass-specific absorption spectra of suspended particles and surface sediments from coastal Louisiana and the lower Mississippi and Atchafalaya rivers were measured with a centered sample-mount integrating sphere and analyzed in conjunction with organic carbon (OC), hydrochloric acid– (HCl-) extractable iron, and dithionite-extractable iron contents. Compositions and absorption properties were comparable to published values for similar particles. Dithionite-extractable iron was strongly correlated with absorption at ultraviolet (UV) and blue wavelengths, while OC and HCl-extractable iron were weakly but positively correlated. Oxidative removal of OC from sediments caused small and variable changes in absorption, while dithionite extraction of iron oxides strongly reduced absorption. Shoulders in the absorption spectra corresponded to absorption bands of iron oxide minerals, and their intensities were well correlated to dithionite-extractable iron contents of the samples. These findings support a primary role for iron oxide and hydroxide minerals in the mass-specific absorption of mostly inorganic particles from the terrestrially influenced coast of Louisiana. Riverine particles had higher dithionite-extractable iron contents and iron oxide–specific absorption features than did marine particles, consistent with current knowledge regarding differential transport of particulate iron oxides and hydroxides through estuarine salinity gradients and reductive alteration of these oxide phases on the Louisiana shelf. The quantifiable dependence of UV absorption features on iron oxide content suggests that, under certain conditions, in situ hyperspectral absorption measurements could be designed to monitor water-column iron mineral transport and transformation.
    Beschreibung: We would like to acknowledge funding support from the National Science Foundation Chemical Oceanography program (L.M. and M.L.E.), a National Aeronautics and Space Administration Earth Systems Science Graduate Fellowship (M.L.E.), and the Office of Naval Research Environmental Optics program (E.B. and C.R.).
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: Workshop held 28-29 September 2017, Cape Cod, MA
    Beschreibung: A two-day workshop was conducted to trade ideas and brainstorm about how to advance our understanding of the ocean’s biological pump. The goal was to identify the most important scientific issues that are unresolved but might be addressed with new and future technological advances.
    Schlagwort(e): Biological pump
    Repository-Name: Woods Hole Open Access Server
    Materialart: Working Paper
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 16 (2015): 2762–2774, doi:10.1002/2015GC005831.
    Beschreibung: Processes active in rising hydrothermal plumes, such as precipitation, particle aggregation, and biological growth, affect particle size distributions and can exert important influences on the biogeochemical impact of submarine venting of iron to the oceans and their sediments. However, observations to date of particle size distribution within these systems are both limited and conflicting. In a novel buoyant hydrothermal plume study at the recently discovered high-temperature (398°C) Piccard Hydrothermal Field, Mid-Cayman Rise, we report optical measurements of particle size distributions (PSDs). We describe the plume PSD in terms of a simple, power-law model commonly used in studies of upper and coastal ocean particle dynamics. Observed PSD slopes, derived from spectral beam attenuation and laser diffraction measurements, are among the highest found to date anywhere in the ocean and ranged from 2.9 to 8.5. Beam attenuation at 650 nm ranged from near zero to a rarely observed maximum of 192 m−1 at 3.5 m above the vent. We did not find large (〉100 μm) particles that would settle rapidly to the sediments. Instead, beam attenuation was well-correlated to total iron, suggesting the first-order importance of particle dilution, rather than precipitation or dissolution, in the rising plume at Piccard. Our observations at Piccard caution against the assumption of rapid deposition of hydrothermal, particulate metal fluxes, and illustrate the need for more particle size and composition measurements across a broader range of sites, globally.
    Beschreibung: This work was funded by the National Science Foundation (OCE-1029223; OCE-1061863), NASA (NNX09AB75G) and Woods Hole Oceanographic Institution's Deep Ocean Exploration Institute and Ocean Ridge Initiative. Ship time (R/V Falkor cruise FK008) was funded by the Schmidt Ocean Institute and M.L.E. was supported by a WHOI Postdoctoral Scholar fellowship.
    Beschreibung: 2016-02-25
    Schlagwort(e): Hydrothermal particulate iron fluxes ; Particle size distribution ; Particle inherent optical properties ; In situ optical sensors ; Mid-Cayman Rise ; Piccard Hydrothermal Field
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/msword
    Format: application/pdf
    Format: application/vnd.ms-excel
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: In-situ pump data
    Beschreibung: TPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765850
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1659995, NSF Division of Ocean Sciences (NSF OCE) OCE-1660012
    Schlagwort(e): Neutrally-Buoyant Sediment Trap ; Carbon pumps ; Biological carbon pump ; Porcupine Abyssal Plain
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Particle Flux
    Beschreibung: This dataset includes particle fluxes calculated from gel trap images. Images were collected at the New England shelf break aboard the R/V Endeavor on 3-7 November 2017 (EN572) and 13-18 June 2016 (EN581) and on a transit between Honolulu, Hawaii and Portland, Oregon aboard the R/V Falkor between 24 January-20 February, 2017 (FK170124). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/847036
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1703664
    Schlagwort(e): Particle flux ; Gel trap images
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-10-31
    Beschreibung: Dataset: Sediment trap fluxes
    Beschreibung: Carbon, Nitrogen, biogenic silica, thorium-234, and mass fluxes from upper ocean sediment traps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/765835
    Beschreibung: NSF Division of Ocean Sciences (NSF OCE) OCE-1659995, NSF Division of Ocean Sciences (NSF OCE) OCE-1660012
    Schlagwort(e): Neutrally-Buoyant Sediment Trap ; Carbon pumps ; Biological carbon pump ; Porcupine Abyssal Plain
    Repository-Name: Woods Hole Open Access Server
    Materialart: Dataset
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...