GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2018-02-27
    Beschreibung: We have geochemically and statistically characterized bulk marine sediment and ash layers at Ocean Drilling Program Site 1149 (Izu-Bonin Arc) and Deep Sea Drilling Project Site 52 (Mariana Arc), and have quantified that multiple dispersed ash sources collectively comprise ~30-35% of the hemipelagic sediment mass entering the Izu-Bonin-Mariana subduction system. Multivariate statistical analyses indicate that the bulk sediment at Site 1149 is a mixture of Chinese Loess, a second compositionally distinct eolian source, a dispersed mafic ash, and a dispersed felsic ash. We interpret the source of these ashes as respectively being basalt from the Izu-Bonin Front Arc (IBFA) and rhyolite from the Honshu Arc. Sr-, Nd-, and Pb isotopic analyses of the bulk sediment are consistent with the chemical/statistical-based interpretations. Comparison of the mass accumulation rate of the dispersed ash component to discrete ash layer parameters (thickness, sedimentation rate, and number of layers) suggests that eruption frequency, rather than eruption size, drives the dispersed ash record. At Site 52, the geochemistry and statistical modeling indicates that Chinese Loess, IBFA, dispersed BNN (boninite from Izu-Bonin), and a dispersed felsic ash of unknown origin are the sources. At Site 1149 the ash layers and the dispersed ash are compositionally coupled, whereas at Site 52 they are decoupled in that there are no boninite layers, yet boninite is dispersed within the sediment. Changes in the volcanic and eolian inputs through time indicate strong arc- and climate-related controls.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-02-01
    Beschreibung: Volcanic ash has long been recognized in marine sediment, and given the prevalence of oceanic and continental arc volcanism around the globe in regard to widespread transport of ash, its presence is nearly ubiquitous. However, the presence/absence of very fine-grained ash material, and identification of its composition in particular, is challenging given its broad classification as an “aluminosilicate” component in sediment. Given this challenge, many studies of ash have focused on discrete layers (that is, layers of ash that are of millimeter-to-centimeter or greater thickness, and their respective glass shards) found in sequences at a variety of locations and timescales and how to link their presence with a number of Earth processes. The ash that has been mixed into the bulk sediment, known as dispersed ash, has been relatively unstudied, yet represents a large fraction of the total ash in a given sequence. The application of a combined geochemical and statistical technique has allowed identification of this dispersed ash as part of the original ash contribution to the sediment. In this paper, we summarize the development of these geochemical/statistical techniques and provide case studies from the quantification of dispersed ash in the Caribbean Sea, equatorial Pacific Ocean, and northwest Pacific Ocean. These geochemical studies (and their sedimentological precursors of smear slides) collectively demonstrate that local and regional arc-related ash can be an important component of sedimentary sequences throughout large regions of the ocean.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...