GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Rhodobacter capsulatus ; Nitrate reductases ; Membrane potential ; Paracoccus denitrificans
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhodobacter capsulatus strain BK5 possesses a membrane bound respiratory nitrate reductase rather than the periplasmic enzyme found in other strains. The enzyme in strain BK5 is shown to be both functionally and structurally related to the nitrate reductase of Paracoccus denitrificans and Escherichia coli.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Photosynthetic bacteria (Rhodobacter capsulatus) ; Phototrophic growth ; Nitrate reduction ; TMAO reduction ; Redox balance ; NMR assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phototrophic growth of Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) under anaerobic conditions with either butyrate or propionate as carbonsource was dependent on the presence of either CO2 or an auxiliary oxidant. NO - 3 , N2O, trimethylamine-N-oxide (TMAO) or dimethylsulphoxide (DMSO) were effective provided the appropriate anaerobic respiratory pathway was present. NO - 3 was reduced extensively to NO - 3 , TMAO to trimethylamine and DMSO to dimethylsulphide under these conditions. Analysis of culture fluids by nuclear magnetic resonance showed that two moles of TMAO or DMSO were reduced per mole of butyrate utilized and one mole of either oxidant was reduced per mole of propionate consumed. The growth rate of Rb. capsulatus on succinate or malate as carbon source was enhanced by TMAO in cultures at low light intensity but not at high light intensities. A new function for anaerobic respiration during photosynthesis is proposed: it permits reducing equivalents from reduced substrates to pass to auxiliary oxidants present in the medium. The use of CO2 or auxiliary oxidants under phototrophic conditions may be influence by the availability of energy from light. It is suggested that the nuclear magnetic resonance methodology developed could have further applications in studies of bacterial physiology.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Hyphomicrobium ; Dimethylsulphoxide reductase ; Periplasmic enzymes ; Chemolithoheterotrophic growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Hyphomicrobium EG can grow with dimethylsulphoxide as sole carbon and energy source with oxygen as electron acceptor. In the present work we have found that the dimethylsulphoxide reductase of this bacterium could be assayed with dithionite-reduced methylviologen as reductant but not with NADH. Sub-cellular fractionation of Hyphomicrobium EG showed that the dimethylsulphoxide reductase was a periplasmic enzyme. An antibody to the dimethylsulphoxide reductase of Rhodobacter capsulatus cross-reacted with a polypeptide in the periplasmic fraction from Hyphomicrobium EG which had the same M r as the dimethylsulphoxide reductase of Rhodobacter capsulatus. It is suggested that the reduction of dimethylsulphoxide in Hyphomicrobium involves respiratory electron transfer.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key wordsPedomicrobium ; Manganese adsorption ; Manganese oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Heat treatment of Pedomicrobium sp. ACM 3067 enhanced the adsorption of Mn(II) to whole cells but abolished Mn(II)-oxidising activity. In whole cells, optimal Mn(II)-oxidising activity occurred at pH 7 and 25 °C. The apparent K m of the Mn(II)-oxidising system for Mn(II) was 26 μM. These data confirm that Mn(II) oxidation is an enzymic process in Pedomicrobium sp. ACM 3067. Measurement of Mn(II) oxidation during the growth cycle demonstrated that the highest activity occurred during early- to mid-exponential phase and was independent of the presence of Mn in the growth medium. Mn(II)-oxidising activity was localised to the membrane fraction. Transmission electron microscopy showed that this fraction consisted of double-layered membrane vesicles. Positively charged molecules such as poly-l-lysine interfered with the adsorption and oxidation of Mn(II) by whole cells and membranes. Similarly, aminoglycoside antibiotics such as gentamicin sulfate proved to be potent inhibitors of Mn(II) oxidation. Treatment of cells with the copper chelator diethyldithiocarbamate inhibited Mn(II) oxidation. Enzyme activity was restored by the addition of Cu(II) ions, but not by Co(II) nor Zn(II). We conclude that Mn(II) oxidation in Pedomicrobium sp. ACM 3067 is catalysed by a Cu-dependent enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Photosynthetic bacteria ; Electron transport ; Rhodopseudomonas capsulata ; Membrane potential ; Dimethylsulphoxide ; Trimethylamine-N-oxide ; Fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Under dark and essentially anaerobic conditions electron flow to either dimethylsulphoxide or trimethylamine-N-oxide in cells of Rhodopseudomonas capsulata has been shown to generate a membrane potential. This conclusion is based on the observation of a red shift in the carotenoid absorption band which is a well characterised indicator of membrane potential in this bacterium. The magnitude of the dimethylsulphoxide- or trimethylamine-N-oxide-dependent membrane potential was reduced either by a protonophore uncoupler of oxidative phosphorylation or synergistically by a combination of a protonophore plus rotenone, an inhibitor of electron flow from NADH dehydrogenase. These findings, together with the observation that venturicidin, an inhibitor of the proton translocating ATPase, did not reduce the membrane potential, show that electron flow to dimethylsulphoxide or trimethylamine-N-oxide is coupled to proton translocation. Thus contrary to some previous proposals dark and anaerobic growth of Rps. capsulata in the presence of dimethylsulphoxide or trimethylamine-N-oxide cannot be regarded as purely fermentative.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 344-349 
    ISSN: 1432-072X
    Keywords: Nitrate reductase ; Photosynthetic bacteria ; Anaerobic respiration ; Nitrate assimilation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1. The properties of nitrate reductase activities have been compared in several strains of Rhodopseudomonas capsulata grown phototrophically in the presence of nitrate as sole nitrogen source. 2. Strains AD2 and BK5 resemble the spontaneous mutant N22DNAR+ (described by McEwan et al. 1982 FEBS Lett. 150, 277\2-280) in that reduction of nitrate was inhibited by either illumination or oxygen but not by NH 4 + , and that electron flow to nitrate under dark anaerobic conditions generated a cytoplasmic membrane potential (as judged by an electrochromic shift in the absorbance spectrum of endogenous carotenoid pigments). In contrast disappearance of nitrate from suspensions of strains N22 and St. Louis was dependent upon illumination and was inhibited by NH 4 + . Membrane potentials were not generated by addition of nitrate in the dark to N22, St. Louis or strain Kbl. 3. Nitrate reductase was shown to be located in the periplasmic space of both strain AD2 and mutant N22DNAR+. The nitrate reductase activity in cells of AD2 and N22DNAR+ was relatively insensitive to azide, with 0.5mM azide required for 50% inhibition. The nitrate reductase of strain BK5 was more strongly associated with the cytoplasmic membrane and no conclusion could be reached about whether it was located on the periplasmic or cytoplasmic surface. In BK5 cells nitrate reductase activity was sensitive to low concentrations of azide (50% inhibition with 2 \gmM azide). It is proposed that functionally the nitrate reductase activity in strains AD2, BK5 and N22DNAR+ has identical roles. These roles are suggested to include: (i) The first step in the assimilation of nitrate. (ii). Provision of an alternative electron acceptor to oxygen for generating a membrane potential. (iii). A mechanism for disposing of excess reducing equivalents in the maintenance of balanced growth. This type of nitrate reductase, especially in AD2 and N22DNAR+, appears to resemble that described in a denitrifying strain of Rps. sphaeroides, but to differ markedly from its membrane-bound counterpart in other bacteria including the denitrifying Paracoccus denitrificans and Escherichia coli. 4. In other strains of Rps. capsulata including St. Louis, N22 and Kbl, only an assimilatory nitrate reductase, whose activity in intact cells is relatively sensitive to azide, is present in anaerobic, phototrophic cultures grown with nitrate as nitrogen source. As this reductase cannot be detected after breakage of cells, no conclusion can be made as to its location in the cell.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-072X
    Keywords: Nitrate assimilation ; Nitrate dissimilation ; Ammonium regulation ; Rhodopseudomonas capsulata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract (1) The disappearance of nitrate from suspensions of intact, washed cells of Rhodopseudomonas capsulata strain N22DNAR+ was measured with an ion selective electrode. In samples taken from phototrophic cultures grown to late exponential phase, nitrate disappearance was partially inhibited by light but was not affected by the presence of ammonium. Nitrate disappearance from samples from low density cultures in the early exponential phase of growth was first inhibited and later stimulated by light. In these cells ammonium ions inhibited the light-dependent but not the dark disappearance of nitrate. It is concluded that cells in the early exponential phase of growth possess both an ammonium-sensitive, assimilatory pathway for nitrate reduction (NRI) and an ammonium-insensitive pathway for nitrate reduction (NRII) which is linked to respiratory electron flow and energy conservation. In cells harvested in late exponential phase only the respiratory pathway for pitrate reduction is detectable. (2) Nitrate reduction, as judged by the oxidation of reduced methyl viologen by anaerobic cell suspensions, was measured at high rates in those strains of R. capsulata (AD2, BK5, N22DNAR+) which are believed to possess NRII activity but not in those strains (Kbl, R3, N22) which only manifest the ammonium-sensitive NRI pathway. On this basis we have used nitrate-dependent oxidation of reduced methyl viologen as a diagnostic test for the nitrate reductase of NRII in cells harvested from cultures of R. capsulata strain AD2. The activity was readily detectable in cells from cultures grown aerobically in the dark with ammonium nitrate as source of nitrogen. When the oxygen supply to the culture was withdrawn, the level of methyl viologen-dependent nitrate reductase increased considerably and nitrite accumulated in the culture medium. Upon reconnecting the oxygen supply, methyl viologen-dependent nitrate reductase activity decreased and the reduction of nitrate to nitrite in the culture was inhibited. It is concluded that the respiratory nitrate reductase activity is regulated by the availability of electron transport pathways that are linked to the generation of a proton electrochemical gradient.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 59 (1989), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The cytochrome c2 structural gene, cycA, from Rhodobacter sphaeroides was expressed in Escherichia coli. CycA-specific mRNA was detected in E. coli both under aerobic and anaerobic conditions with trimethylamine-N-oxide as electron acceptor. However mature holocytochrome c2 was only detected in anaerobically-grown cells. The mature form of cytochrome c2 (Mr= 12,500) was secreted into the periplasm of E. coli suggesting that the signal polypeptide was processed. The cytochrome c2 synthesized in E. coli exhibited absorbance maxima in the reduced from at 550 nm (α-band) and 521 nm (β-band) and contained covalently attached haem c. The results indicate that a foreign c-type cytochrome can be secreted and assembled in E. coli under anaerobic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...