GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Two chlorate resistant mutants of Rhodobacter sphaeroides were isolated which were deficient in dimethylsulfoxide reductase activity. Immunoblotting experiments showed that the phenotype of these mutants and that of Rhodobacter capsulatus strain DK9, a mutant unable to reduce dimethylsulfoxide, was correlated with low or undetectable levels of the dimethylsulfoxide reductase apoprotein. All three mutants were complemented by a cosmid from a library of Rhodobacter sphaeroides genomic DNA. Further genetic complementation analysis revealed that functions required for restoration of dimethylsulfoxide reductase activity in the Rhodobacter sphaeroides mutants were encoded on an 9 kb EcoR1 DNA fragment derived from this cosmid. Expression of this 9 kb DNA fragment in Escherichia coli showed that it encoded the dimethylsulfoxide reductase structural gene of Rhodobacter sphaeroides.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 168 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dimethylsulfoxide enhanced the phototrophic growth of Rhodobacter sphaeroides in blue light by enabling cells to grow to a higher culture density. This enhanced growth with dimethylsulfoxide was not due to redox poising of the cyclic photosynthetic electron transfer chain and did not involve respiration. It was demonstrated that carotenoids and cyclic electron transfer were obligatory for the effect of dimethylsulfoxide suggesting that this molecule enhances the harvesting of blue light. The enhancement of blue light-dependent phototrophic growth by dimethylsulfoxide was shown to occur at very low concentrations of this molecule and this may have some significance for the growth of phototrophic bacteria in some environments.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Fourteen Rhodobacter capsulatus mutants unable to grow with xanthine as sole nitrogen source were isolated by random Tn5 mutagenesis. Five of these Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments hybridizing to oligonucleotides synthesized according to conserved amino acid sequences of eukaryotic xanthine dehydrogenases. DNA sequence analysis of this region revealed two open reading frames, designated xdhA and xdhB, encoding xanthine dehydrogenase. The deduced amino acid sequence of XDHA contains binding sites for two [2Fe–2S] clusters and FAD, whereas XDHB is predicted to contain the molybdopterin cofactor. In contrast to R. capsulatus, these three cofactor binding sites reside within a single polypeptide chain in eukaryotic xanthine dehydrogenases. The amino acid sequence of xanthine dehydrogenase from R. capsulatus showed a higher degree of similarity to eukaryotic xanthine dehydrogenases than to the xanthine dehydrogenase-related aldehyde oxidoreductase from Desulphovibrio gigas. The expression of an xdhA–lacZ fusion was induced when hypoxanthine or xanthine was added as sole nitrogen source. Mutations in nifR1 (ntrC) and nifR4 (rpoN, encoding σ54) had no influence on xdh gene expression. A putative activator sensing the availability of substrate seems to respond to xanthine but not to hypoxanthine. The transcriptional start site of xdhA was mapped by primer extension analysis. Comparison with known promoter elements revealed no significant homology. Xanthine dehydrogenase from R. capsulatus was purified to homogeneity. The enzyme consists of two subunits with molecular masses of 85 kDa and 50 kDa respectively. N-terminal amino acid sequencing of both subunits confirmed the predicted start codons. The molecular mass of the native enzyme was determined to be 275 kDa, indicating an α2β2-subunit structure. Analysis of the molybdenum cofactor of xanthine dehydrogenase from R. capsulatus revealed that it contains the molybdopterin cofactor and not a molybdopterin dinucleotide derivative.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The nucleotide sequence of the Rhodobacter capsulatus bacterioferritin gene (bfr) was determined and found to encode a protein of 161 amino acids with a predicted molecular mass of 18 174 Da. The molecular mass of the purified protein was estimated to be 18 176.06 ± 0.80 Da by electrospray mass spectrometry. The bfr gene was introduced into an expression vector, and bacterioferritin was produced to a high level in Escherichia coli. The amino acids which are involved in haem ligation, and those which provide ligands in the binuclear metal centre in bacterioferritin from E. coli are conserved in the R. capsulatus protein. The sequences of bacterioferritins, ferritin-like proteins, and proteins similar to Dps of E. coli are compared, and membership of the bacterioferritin family re-evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Key wordsPedomicrobium ; Manganese adsorption ; Manganese oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Heat treatment of Pedomicrobium sp. ACM 3067 enhanced the adsorption of Mn(II) to whole cells but abolished Mn(II)-oxidising activity. In whole cells, optimal Mn(II)-oxidising activity occurred at pH 7 and 25 °C. The apparent K m of the Mn(II)-oxidising system for Mn(II) was 26 μM. These data confirm that Mn(II) oxidation is an enzymic process in Pedomicrobium sp. ACM 3067. Measurement of Mn(II) oxidation during the growth cycle demonstrated that the highest activity occurred during early- to mid-exponential phase and was independent of the presence of Mn in the growth medium. Mn(II)-oxidising activity was localised to the membrane fraction. Transmission electron microscopy showed that this fraction consisted of double-layered membrane vesicles. Positively charged molecules such as poly-l-lysine interfered with the adsorption and oxidation of Mn(II) by whole cells and membranes. Similarly, aminoglycoside antibiotics such as gentamicin sulfate proved to be potent inhibitors of Mn(II) oxidation. Treatment of cells with the copper chelator diethyldithiocarbamate inhibited Mn(II) oxidation. Enzyme activity was restored by the addition of Cu(II) ions, but not by Co(II) nor Zn(II). We conclude that Mn(II) oxidation in Pedomicrobium sp. ACM 3067 is catalysed by a Cu-dependent enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-8773
    Keywords: dissimilatory Fe(III) reduction ; membrane-bound Fe(III) reductase ; polynuclear Fe(III) complexes ; Shewanella putrefaciens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The susceptibility to dissimilatory reduction of polynuclear oxo- and hydroxo-bridged Fe(III) complexes byShewanella putrefaciens intact cells and membranes has been investigated. These complexes were ligated by the potential tetradentates heidi (H3heidi =N-(2-hydroxyethyl)iminodiacetic acid) or nta (H3nta = nitrilotriacetic acid), or the potential tridentate ida (H2ida = iminodiacetic acid). A number of defined small complexes with varied nuclearity and solubility properties were employed, as well as undefined species prepared by mixing different molar ratios of ida or heidi:Fe(III) in solution. The rates of Fe(III) reduction determined by an assay for Fe(II) formation with ferrozine were validated by monitoringc-type cytochrome oxidation and re-reduction associated with electron transport. For the undefined Fe(III) polymeric species, reduction rates in whole cells and membranes were considerably faster in the presence of heidi compared to ida. This is believed to result from generally smaller and more reactive clusters forming with heidi as a consequence of the alkoxo function of this ligand being able to bridge between Fe(III) nuclei, with access to an Fe(III) reductase located at the cytoplasmic membrane being of some importance. The increases in reduction rates of the undefined ida species with Fe(III) using membranes relative to whole cells reinforce such a view. Using soluble synthetic Fe(III) clusters, slow reduction was noted for an oxo-bridged dimer coordinatively saturated with ida and featuring unligated carboxylates. This suggests that sterically hindering the cation can influence enzyme action. A heidi dimer and a heidi multimer (17 or 19 Fe(III) nuclei), which are both of poor solubility, were found to be reduced by whole cells, but dissimilation rates increased markedly using membranes. These data suggest that Fe(III) reductase activity may be located at both the outer membrane and the cytoplasmic membrane ofS. putrefaciens. Slower reduction of the heidi multimer relative to the heidi dimer reflects the presence of a central hydroxo(oxo)-bridged core containing nine Fe(III) nuclei within the former cluster. This unit is a poor substrate for dissimilation, owing to the fact that the Fe(III) is not ligated by aminocarboxylate. The faster reduction noted for the heidi dimer in membranes than for a soluble ida monomer suggests that the presence of ligating water molecules may relieve steric hindrance to enzyme attack. Furthermore, reduction of an insoluble oxo-bridged nta dimer featuring ligating water molecules in intact cells was faster than that of a soluble monomer coordinatively saturated by nta and possessing an unligated carboxylate. This suggests that steric factors may override solubility considerations with respect to the susceptibility to reduction of certain Fe(III) complexes by the bacterium.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1327
    Keywords: Key words EXAFS ; Rhodobacter capsulatus ; DMSO reductase ; DMS ; Molybdenum cofactor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Mo K-edge X-ray absorption spectroscopy (XAS) has been used to probe the environment of Mo in dimethylsulfoxide (DMSO) reductase from Rhodobacter capsulatus in concert with protein crystallographic studies. The oxidised (MoVI) protein has been investigated in solution at 77 K; the Mo K-edge position (20006.4 eV) is consistent with the presence of MoVI and, in agreement with the protein crystallographic results, the extended X-ray absorption fine structure (EXAFS) is also consistent with a seven-coordinate site. The site is composed of one oxo-group (Mo=O 1.71 Å), four S atoms (considered to arise from the dithiolene groups of the two molybdopterins, two at 2.32 Å and two at 2.47 Å, and two O atoms, one at 1.92 Å (considered to be H-bonded to Trp 116) and one at 2.27 Å (considered to arise from Ser 147). The Mo K-edge XAS recorded for single crystals of oxidised (MoVI) DMSO reductase at 77 K showed a close correspondence to the data for the frozen solution but had an inferior signal:noise ratio. The dithionite-reduced form of the enzyme and a unique form of the enzyme produced by the addition of dimethylsulfide (DMS) to the oxidised (MoVI) enzyme have essentially identical energies for the Mo K-edge, at 20004.4 eV and 20004.5 eV, respectively; these values, together with the lack of a significant presence of MoV in the samples as monitored by EPR spectroscopy, are taken to indicate the presence of MoIV. For the dithionite-reduced sample, the Mo K-edge EXAFS indicates a coordination environment for Mo of two O atoms, one at 2.05 Å and one at 2.51 Å, and four S atoms at 2.36 Å. The coordination environment of the Mo in the DMS-reduced form of the enzyme involves three O atoms, one at 1.69 Å, one at 1.91 Å and one at 2.11 Å, plus four S atoms, two at 2.28 Å and two at 2.37 Å. The EXAFS and the protein crystallographic results for the DMS-reduced form of the enzyme are consistent with the formation of the substrate, DMSO, bound to MoIV with an Mo-O bond of length 1.92 Å.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-8773
    Keywords: cytochrome oxidation ; dissimilatory Fe(III) reduction ; Fe(III) chelators ; membrane-bound Fe(III) reductase ; Shewanella putrefaciens
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The ability of S. putrefaciens to reduce Fe(III) complexed by a variety of ligands has been investigated. All of the ligands tested caused the cation to be more susceptible to reduction by harvested whole cells than when uncomplexed, although some complexes were more readily reduced than others. Monitoring rates of reduction by a ferrozine assay for Fe(II) formation proved inadequate using Fe(III) ligands giving Fe(II) complexes of low kinetic lability (e.g. EDTA). A more suitable assay for Fe(III) reduction in the presence of such ligands proved to be the observation of associated cytochrome oxidation and re-reduction. Where possible, an assay for Fe(III) reduction based upon the disappearance of Fe(III) complex was also employed. Reduction of all Fe(III) complexes tested was totally inhibited by the presence of O2, partially inhibited by HQNO and slower in the absence of a physiological electron donor. Upon cell fractionation, Fe(III) reductase activity was detected exclusively in the membranes. Using different physiological electron donors in assays on membranes, relative reduction rates of Fe(III) complexes complemented the data from whole cells. The differences in susceptibility to reduction of the various complexes are discussed, as is evidence for the respiratory nature of the reduction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...