GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Climatic changes -- Polar Regions -- History. ; Electronic books.
    Description / Table of Contents: This book presents a thorough and highly cross-disciplinary review of how the polar climates have changed over the last million years and sets recent changes within a long term perspective. It will be invaluable for researchers and advanced students in polar science, climatology, global change, meteorology, oceanography and glaciology.
    Type of Medium: Online Resource
    Pages: 1 online resource (450 pages)
    Edition: 1st ed.
    ISBN: 9781139141352
    DDC: 551.6911
    Language: English
    Note: Cover -- CLIMATE CHANGE IN THE POLAR REGIONS -- Title -- Copyright -- Contents -- Preface -- 1: Introduction -- 1.1 The environment of the polar regions -- 1.1.1 The Arctic -- 1.1.2 The Antarctic -- 1.2 The role of the polar regions in the global climate system -- 1.3 Possible implications of high latitude climate change -- 1.3.1 Introduction -- 1.3.2 The Arctic -- 1.3.3 The Antarctic -- 2: Polar climate data and models -- 2.1 Introduction -- 2.2 Instrumental observations -- 2.2.1 Introduction -- 2.2.2 Surface data -- 2.2.3 Upper air climate data -- 2.2.4 Ocean data -- 2.3 Meteorological analysis fields -- 2.3.1 Introduction -- 2.3.2 Numerical weather prediction models -- 2.3.3 Reanalyses -- 2.4 Remotely sensed data -- 2.4.1 Introduction -- 2.4.2 Satellite imagery -- 2.4.3 Satellite sounding data -- 2.5 Proxy climate data -- 2.5.1 Introduction -- 2.5.2 Ice cores -- 2.5.3 Sediment cores -- 2.5.4 Dendrochronology -- 2.5.5 Dating of driftwood -- 2.5.6 Historical records -- 2.6 Models -- 2.6.1 Introduction -- 2.6.2 Climate models -- 2.6.3 Ice sheet models -- 3: The high latitude climates and mechanisms of change -- 3.1 Introduction -- 3.2 Factors influencing the broadscale climates of the polar regions -- 3.2.1 Introduction -- 3.2.2 The radiation regime -- 3.2.3 The poleward heat flux -- 3.2.4 The atmospheric heat budgets of the polar regions -- 3.2.5 The water vapour budget -- 3.3 Processes of the high latitude climates -- 3.3.1 High latitude feedbacks and amplification -- 3.3.2 Air-sea-ice interactions -- 3.4 The mechanisms of high latitude climate change -- 3.4.1 Orbital and solar changes -- 3.4.2 Heinrich events -- 3.4.3 Dansgaard-Oeschger events -- 3.4.4 Atmospheric gases and aerosols -- 3.4.5 The effects of extra-polar climate variability -- 3.4.6 ENSO and the Pacific teleconnections. , 3.4.7 The Antarctic Circumpolar Wave (ACW) and Antarctic dipole (ADP) -- 3.5 Atmospheric circulation -- 3.5.1 Arctic -- 3.5.2 The Antarctic -- 3.6 Temperature -- 3.6.1 Arctic -- 3.6.2 Antarctic -- 3.7 Cloud and precipitation -- 3.7.1 Cloud -- 3.7.2 Precipitation -- 3.8 Sea ice -- 3.8.1 The nature of sea ice -- 3.8.2 Sea ice motion -- 3.8.3 Climatological occurrence -- 3.9 The ocean circulation -- 3.9.1 The Arctic -- 3.9.2 Antarctic -- 3.10 Concluding remarks -- 4: The last million years -- 4.1 Introduction -- 4.1.1 On the notation used -- 4.1.2 The frequency of ice ages -- 4.2 The Arctic -- 4.2.1 The period before Termination II (~130 kyr BP) -- 4.2.2 The last interglacial (130-115 kyr BP) -- 4.2.3 Later MIS 5: 107-75 kyr BP -- 4.2.4 MIS4 and MIS 3: 75-25 kyr BP -- 4.2.5 The Last Glacial Maximum (LGM) and MIS 1: 24-11.5 kyr BP -- 4.3 The Antarctic -- 4.3.1 The period before Termination V (1000-430 kyr BP) -- 4.3.2 Termination V (~430 kyr BP) -- 4.3.3 Terminations IV to II (~320 to ~138 kyr BP) -- 4.3.4 MIS 3 and 4 and Termination I -- 4.4 Linking high latitude climate change in the two hemispheres -- 5: The Holocene -- 5.1 Introduction -- 5.2 Forcing of the climate system during the Holocene -- 5.2.1 Introduction -- 5.2.2 Orbital changes -- 5.2.3 Solar output -- 5.2.4 Volcanic aerosols -- 5.3 Atmospheric circulation -- 5.3.1 Introduction -- 5.3.2 The Arctic -- 5.3.3 The Antarctic -- 5.4 Temperature -- 5.4.1 Temperature variability over the Holocene -- 5.4.2 The Early Holocene - 11.7-5 kyr BP -- 5.4.3 The Mid Holocene - 5-3 kyr BP -- 5.4.4 The Late Holocene - 3 kyr BP to present -- 5.5 The ocean circulation -- 5.5.1 The Arctic -- 5.5.2 The Antarctic -- 5.6 Sea ice and sea surface temperatures -- 5.6.1 Introduction -- 5.6.2 The Arctic -- 5.6.3 The Antarctic -- 5.7 Atmospheric gases and aerosols -- 5.7.1 Well-mixed gases -- 5.7.2 Aerosols in the Arctic. , 5.7.3 Aerosols in the Antarctic -- 5.8 The cryosphere, precipitation and sea level -- 5.8.1 Introduction -- 5.8.2 The major ice sheets -- 5.8.3 Glaciers -- 5.8.4 Ice shelves -- 5.8.5 Sea level -- 5.8.6 Permafrost -- 5.9 Concluding remarks -- 6: The instrumental period -- 6.1 Introduction -- 6.2 The main meteorological elements -- 6.2.1 Introduction -- 6.2.2 The Arctic -- 6.2.3 The Antarctic -- 6.3 Changes in the atmospheric circulation -- 6.3.1 Introduction -- 6.3.2 The Arctic -- 6.3.3 Antarctic -- 6.4 The ocean environment -- 6.4.1 Introduction -- 6.4.2 The Arctic -- 6.4.3 The Antarctic -- 6.5 Sea ice -- 6.5.1 Introduction -- 6.5.2 Sea ice extent and concentration -- 6.5.3 Sea ice thickness -- 6.6 Snow cover -- 6.6.1 Introduction -- 6.6.2 The Arctic -- 6.6.3 The Antarctic -- 6.7 Permafrost -- 6.7.1 Introduction -- 6.7.2 The Arctic -- 6.7.3 The Antarctic -- 6.8 Atmospheric gases and aerosols -- 6.8.1 Introduction -- 6.8.2 Well-mixed gases -- 6.8.3 Pollution -- 6.8.4 Stratospheric ozone -- 6.9 Terrestrial ice and sea level -- 6.9.1 Introduction -- 6.9.2 The ice sheets -- 6.9.3 Glaciers -- 6.9.4 Ice shelves -- 6.9.5 Sea level -- 6.10 Attribution of recent changes -- 6.10.1 The Arctic -- 6.10.2 The Antarctic -- 6.11 Concluding remarks -- 7: Predictions for the next 100 years -- 7.1 Introduction -- 7.2 Possible future greenhouse gas emission scenarios and the IPCC models -- 7.2.1 Introduction -- 7.2.2 The IPCC greenhouse gas emission scenarios -- 7.2.3 The climate models used to produce the twenty-first century projections -- 7.3 Changes in the atmospheric circulation and the modes of climate variability -- 7.3.1 Introduction -- 7.3.2 The Arctic -- 7.3.3 The Antarctic -- 7.4 The main meteorological elements -- 7.4.1 Introduction -- 7.4.2 Projected global changes -- 7.4.3 The Arctic -- 7.4.4 The Antarctic -- 7.5 The ocean circulation and water masses. , 7.5.1 Introduction -- 7.5.2 The Arctic -- 7.5.3 The Antarctic -- 7.5.4 The carbon cycle -- 7.6 Sea ice -- 7.6.1 Introduction -- 7.6.2 The Arctic -- 7.6.3 The Antarctic -- 7.7 Seasonal snow cover and the terrestrial environment -- 7.7.1 Introduction -- 7.7.2 The Arctic -- 7.7.3 The Antarctic -- 7.8 Permafrost -- 7.8.1 Introduction -- 7.8.2 The Arctic -- 7.8.3 The Antarctic -- 7.9 Atmospheric gases and aerosols -- 7.9.1 Introduction -- 7.9.2 Stratospheric ozone -- 7.10 Terrestrial ice, the ice shelves and sea level -- 7.10.1 Introduction -- 7.10.2 Terrestrial ice and sea level -- 7.10.3 Ice shelves -- 7.10.4 A summary of projected global sea level changes -- 7.11 Concluding remarks -- 8: Summary and future research needs -- 8.1 Introduction -- 8.2 Gaining improved understanding of past climate change -- 8.2.1 The instrumental period -- 8.2.2 The Holocene -- 8.2.3 The last one million years -- 8.3 Modelling the high latitude climate system -- 8.4 Data required -- 8.4.1 In-situ data -- 8.4.2 Proxy data -- 8.4.3 Satellite data -- 8.4.4 Reanalysis fields -- 8.5 Concluding remarks -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Antarctic Treaty Consultative Meeting, Hobart, Australia, 2012-2012Antarctic Treaty Consultative Meeting XXXV, Hobart 2012, Agenda Item ATCM 14, CEP 5, 1-3; IP 45
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-02
    Description: [1]  To better constrain fault slip rates and patterns of interseismic deformation in the western Transverse Ranges of southern California, we present results from analysis of GPS and InSAR data and three-dimensional mechanical and kinematic models of active faulting. Anthropogenic motions are detected in several localized zones but do not significantly affect the vast majority of continuous GPS site locations. GPS measures contraction rates across the Ventura basin of ~7 mm/yr. oriented west-northwest with rates decreasing to the west and east. The Santa Barbara channel is accommodating ~6.5 mm/yr. in the east and ~2.5 mm/yr in the western portions of N/S contraction. Inversion of horizontal GPS velocities highlights a zone of localized fast contraction rates following the Ventura basin. Using a mechanical model driven by geodetically-calculated strain rates, we show that there are no significant discrepancies between short term slip rates captured by geodesy and longer term slip rates measured by geology. Mechanical models reproduce the first-order interseismic velocity and strain rate patterns, but fail to reproduce strongly localized contraction in the Ventura basin due to the inadequate homogeneous elastic properties of the model. Existing two-dimensional models match horizontal rates, but predict significant uplift gradients that are not observed in the GPS data. Mechanical models predict zones of fast contraction in the Santa Barbara channel and offshore near Malibu, suggesting that offshore faults represent a significant seismic hazard to the region. Furthermore, many active faults throughout the region may produce little to no interseismic deformation, making accurate seismic hazard assessment challenging.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-02
    Description: Recent investigations have provided new and significantly revised constraints on the subsurface structure of the Ventura-Pitas Point fault system in southern California; however, few data directly constrain fault surfaces below ~6 km depth. Here, we use geometrically complex three-dimensional mechanical models driven by current geodetic strain rates to test two proposed subsurface models of the fault system. We find that the model that incorporates a ramp geometry for the Ventura-Pitas Point fault better reproduces both the regional long term geologic slip rate data and interseismic GPS observations of uplift in the Santa Ynez Mountains. The model-calculated average reverse slip rate for the Ventura-Pitas Point fault is 3.5 ± 0.3 mm/yr, although slip rates are spatially variable on the fault surface with 〉 8 mm/yr predicted on portions of the lower ramp section at depth.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...