GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Royal Society, 2004. This article is posted here by permission of Royal Society for personal use, not for redistribution. The definitive version was published in Biology Letters 271: Supplement 6 (2004): S383-S386, doi:10.1098/rsbl.2004.0208.
    Description: Beaked whales (Cetacea: Ziphiidea) of the genera Ziphius and Mesoplodon are so difficult to study that they are mostly known from strandings. How these elusive toothed whales use and react to sound is of concern because they mass strand during naval sonar exercises. A new non-invasive acoustic recording tag was attached to four beaked whales (two Mesoplodon densirostris and two Ziphius cavirostris) and recorded high-frequency clicks during deep dives. The tagged whales only clicked at depths below 200 m, down to a maximum depth of 1267 m. Both species produced a large number of short, directional, ultrasonic clicks with no significant energy below 20 kHz. The tags recorded echoes from prey items; to our knowledge, a first for any animal echolocating in the wild. As far as we are aware, these echoes provide the first direct evidence on how free-ranging toothed whales use echolocation in foraging. The strength of these echoes suggests that the source level of Mesoplodon clicks is in the range of 200-220 dB re 1 μPa at 1 m. This paper presents conclusive data on the normal vocalizations of these beaked whale species, which may enable acoustic monitoring to mitigate exposure to sounds intense enough to harm them.
    Description: Tag development was funded by a Cecil H. and Ida M. Green Award and the US Office of Naval Research. Fieldwork was funded by the Strategic Environmental Research and Development Program (SERDP) under program CS-1188, the Packard Foundation, and the Council of Environment of the Canary Islands, and was supported by University of La Laguna, BluWest, SACLANT Undersea Research Centre, and the Government of El Hierro.
    Keywords: Beaked Whale ; Mesoplodon ; Ziphius ; Clicks ; Echolocation ; Sonar
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 394982 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2008. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 124 (2008): 4059-4068, doi:10.1121/1.2945154.
    Description: Underwater sound signals for biosonar and communication normally have different source properties to serve the purposes of generating efficient acoustic backscatter from small objects or conveying information to conspecifics. Harbor porpoises (Phocoena phocoena) are nonwhistling toothed whales that produce directional, narrowband, high-frequency (HF) echolocation clicks. This study tests the hypothesis that their 130 kHz HF clicks also contain a low-frequency (LF) component more suited for communication. Clicks from three captive porpoises were analyzed to quantify the LF and HF source properties. The LF component is 59 (S.E.M=1.45 dB) dB lower than the HF component recorded on axis, and even at extreme off-axis angles of up to 135°, the HF component is 9 dB higher than the LF component. Consequently, the active space of the HF component will always be larger than that of the LF component. It is concluded that the LF component is a by-product of the sound generator rather than a dedicated pulse produced to serve communication purposes. It is demonstrated that distortion and clipping in analog tape recorders can explain some of the prominent LF components reported in earlier studies, emphasizing the risk of erroneous classification of sound types based on recording artifacts.
    Description: This work was supported by the Carlsberg Foundation and Oticon, and via a Steno Scholarship from the Danish Natural Science Research Council to PTM.
    Keywords: Bioacoustics ; Mechanoception ; Underwater sound ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2010. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 127 (2010): 560-567, doi:10.1121/1.3257203.
    Description: Estimating the range at which harbor porpoises can detect prey items and environmental objects is integral to understanding their biosonar. Understanding the ranges at which they can use echolocation to detect and avoid obstacles is particularly important for strategies to reduce bycatch. Transmission loss (TL) during acoustic propagation is an important determinant of those detection ranges, and it also influences animal detection functions used in passive acoustic monitoring. However, common assumptions regarding TL have rarely been tested. Here, TL of synthetic porpoise clicks was measured in porpoise habitats in Canada and Denmark, and field data were compared with spherical spreading law and ray-trace (Bellhop) model predictions. Both models matched mean observations quite well in most cases, indicating that a spherical spreading law can usually provide an accurate first-order estimate of TL for porpoise sounds in porpoise habitat. However, TL varied significantly (±10 dB) between sites and over time in response to variability in seafloor characteristics, sound-speed profiles, and other short-timescale environmental fluctuations. Such variability should be taken into account in estimates of the ranges at which porpoises can communicate acoustically, detect echolocation targets, and be detected via passive acoustic monitoring.
    Description: Field data collection was partially supported by a Student Research Award from the WHOI Ocean Life Institute (Grant No. 25051351). P.T.M. and M.H. were funded by Steno and frame grants from the Danish Natural Science Foundation.
    Keywords: Bioacoustics ; Biocommunications ; Mechanoception ; Underwater acoustic propagation ; Zoology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 395 (2009): 55-73, doi:10.3354/meps08255.
    Description: Many marine animals use sound passively or actively for communication, foraging, predator avoidance, navigation, and to sense their environment. The advent of acoustic recording tags has allowed biologists to get the on-animal perspective of the sonic environment and, in combination with movement sensors, to relate sounds to the activities of the tagged animal. These powerful tools have led to a wide range of insights into the behaviour of marine animals and have opened new opportunities for studying the ways they interact with their environment. Acoustic tags demand new analysis methods and careful experimental design to optimize the consistency between research objectives and the realistic performance of the tags. Technical details to consider are the suitability of the tag attachment to a given species, the accuracy of the tag sensors, and the recording and attachment duration of the tag. Here we consider the achievements, potential, and limitations of acoustic recording tags in studying the behaviour, habitat use and sensory ecology of marine mammals, the taxon to which this technology has been most often applied. We examine the application of acoustic tags to studies of vocal behaviour, foraging ecology, acoustic tracking, and the effects of noise to assess both the breadth of applications and the specific issues that arise in each.
    Description: Funding for the review came from the National Oceanographic Partnership Program. The DTAG work described here has been supported by the Mineral Management Service, Office of Naval Research, Strategic Environmental Research and Development Program, Navy N45, Packard Foundation and others.
    Keywords: Acoustics ; Tag ; Marine mammal ; Foraging ; Tracking ; Behaviour ; Effects of noise
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 395 (2009): 161-175, doi:10.3354/meps08204.
    Description: Increasing numbers and speeds of vessels in areas with populations of cetaceans may have the cumulative effect of reducing habitat quality by increasing the underwater noise level. Here, we first use digital acoustic tags to demonstrate that free-ranging delphinids in a coastal deep-water habitat are subjected to varying and occasionally intense levels of vessel noise. Vessel noise and sound propagation measurements from a shallow-water habitat are then used to model the potential impact of high sound levels from small vessels on delphinid communication in both shallow and deep habitats, with bottlenose dolphins Tursiops sp. and short-finned pilot whales Globicephala macrorhynchus as model organisms. We find that small vessels travelling at 5 knots in shallow water can reduce the communication range of bottlenose dolphins within 50 m by 26%. Pilot whales in a quieter deep-water habitat could suffer a reduction in their communication range of 58% caused by a vessel at similar range and speed. Increased cavitation noise at higher speeds drastically increases the impact on the communication range. Gear shifts generate high-level transient sounds (peak– peak source levels of up to 200 dB re 1 µPa) that may be audible over many kilometres and may disturb close-range animals. We conclude that noise from small vessels can significantly mask acoustically mediated communication in delphinids and contribute to the documented negative impacts on animal fitness.
    Description: This work was supported by the PhD School of Aquatic Sciences (SOAS), Aarhus University, DK, WWF Verdensnaturfonden and Aase & Ejnar Danielsens Foundation, the Siemens Foundation, a research agreement between La Laguna University and Woods Hole Oceanographic Institution, the Faculty of Science at the University of Aarhus, Denmark, and the Danish Natural Science Foundation via a Steno scholarship and frame grants to P.T.M. M.J. and N.A. were funded by the National Oceanographic Partnership Program.
    Keywords: Acoustic communication ; Vessel noise ; Masking ; Bottlenose dolphins ; Pilot whales ; Recreational vessels ; Whale watching
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 279 (2012): 1041-1050, doi:10.1098/rspb.2011.2088.
    Description: Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.
    Description: This paper and the workshop it stemmed from were funded by the Woods Hole Oceanographic Institution Marine Mammal Centre.
    Keywords: Diving physiology ; Marine mammals ; Gas bubbles ; Embolism ; Decompression sickness
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 3919-3927, doi:10.1121/1.1910225.
    Description: Strandings of beaked whales of the genera Ziphius and Mesoplodon have been reported to occur in conjunction with naval sonar use. Detection of the sounds from these elusive whales could reduce the risk of exposure, but descriptions of their vocalizations are at best incomplete. This paper reports quantitative characteristics of clicks from deep-diving Cuvier's beaked whales (Ziphius cavirostris) using a unique data set. Two whales in the Ligurian Sea were simultaneously tagged with sound and orientation recording tags, and the dive tracks were reconstructed allowing for derivation of the range and relative aspect between the clicking whales. At depth, the whales produced trains of regular echolocation clicks with mean interclick intervals of 0.43 s (±0.09) and 0.40 s (±0.07). The clicks are frequency modulated pulses with durations of ~200 µs and center frequencies around 42 kHz, –10 dB bandwidths of 22 kHz, and Q3 dB of 4. The sound beam is narrow with an estimated directionality index of more than 25 dB, source levels up to 214 dBpp re: 1 µPa at 1 m, and energy flux density of 164 dB re: 1 µPa2 s. As the spectral and temporal properties are different from those of nonziphiid odontocetes the potential for passive detection is enhanced.
    Description: Tag was funded in part by a Cecil H. and Ida M. Green Award and the US Office of Naval Research. WHOI fieldwork and tag development was funded by the National Oceanographic Partnership Program (NOPP), the Strategic Environmental Research and Development Program (SERDP) under Program No. CS-1188, and the Packard Foundation, and was supported by BluWest and the NATO Undersea Research Center.
    Keywords: Bioacoustics ; Mechanoception
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1473-1485, doi:10.1121/1.1828501.
    Description: The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 µPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks 〉20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 µPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 µPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 µPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives.
    Description: This work was funded by grants from the Office of Naval Research Grants N00014-99-1-0819 and N00014-01-1-0705, and the Packard Foundation.
    Keywords: Bioacoustics ; Biocommunications ; Array signal processing ; Echo ; Hydrophones ; Multidimensional signal processing ; Underwater sound ; Sonar signal processing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Current Biology 28 (2018): 3878-3885.e3, doi:10.1016/j.cub.2018.10.037.
    Description: Toothed whales are apex predators varying in size from 40-kg porpoises to 50-ton sperm whales that all forage by emitting high-amplitude ultrasonic clicks and listening for weak returning echoes [1, 2]. The sensory field of view of these echolocating animals depends on the characteristics of the biosonar signals and the morphology of the sound generator, yet it is poorly understood how these biophysical relationships have shaped evolution of biosonar parameters as toothed whales adapted to different foraging niches. Here we test how biosonar output, frequency, and directivity vary with body size to understand the co-evolution of biosonar signals and sound-generating structures. We show that the radiated power increases twice as steeply with body mass (P ∝ M1.47±0.25) than expected from typical scaling laws of call intensity [3], indicating hyperallometric investment into sound production structures. This is likely driven by a strong selective pressure for long-range biosonar in larger oceanic or deep-diving species to search efficiently for patchy prey. We find that biosonar frequency scales inversely with body size (F∝ M-0.19±0.03), resulting in remarkably stable biosonar beamwidth that is independent of body size. We discuss how frequency scaling in toothed whales cannot be explained by the three main hypotheses for inverse scaling of frequency in animal communication [3-5]. We propose that a narrow acoustic field of view, analogous to the fovea of many visual predators, is the primary evolutionary driver of biosonar frequency in toothed whales, serving as a spatial filter to reduce clutter levels and facilitate long-range prey detection.
    Description: FHJ received support from a Carlsberg Foundation travel grant and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies. ML was funded by a PhD stipend from the Faculty of Science and Technology, Aarhus University, and National Research Council grants to PTM. DMW was supported by the Danish National Research Foundation and Carlsberg Foundation grants to PTM. MJ was partly supported by an Aarhus University visiting professorship.
    Keywords: Echolocation ; Toothed whales ; Evolution ; Phylogenetic comparative methods ; Foraging ; Ecology ; Biosonar directivity ; Field of view ; Frequency scaling
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 54 (2007): 1421-1444, doi:10.1016/j.dsr.2007.04.020.
    Description: Toothed whales produce short, ultrasonic clicks of high directionality and source level to probe their environment acoustically. This process, termed echolocation, is to a large part governed by the properties of the emitted clicks. Therefore derivation of click source parameters from free-ranging animals is of increasing importance to understand both how toothed whales use echolocation in the wild and how they may be monitored acoustically. This paper addresses how source parameters can be derived from free-ranging toothed whales in the wild using calibrated multi-hydrophone arrays and digital recorders. We outline the properties required of hydrophones, amplifiers and analog to digital converters, and discuss the problems of recording echolocation clicks on the axis of a directional sound beam. For accurate localization the hydrophone array apertures must be adapted and scaled to the behavior of, and the range to, the clicking animal, and precise information on hydrophone locations is critical. We provide examples of localization routines and outline sources of error that lead to uncertainties in localizing clicking animals in time and space. Furthermore we explore approaches to time series analysis of discrete versions of toothed whale clicks that are meaningful in a biosonar context.
    Description: This work was supported by a Steno Fellowship from the Danish National Science Foundation to PTM, a grant from the Carlsberg Foundation to MW with additional support to the authors from Reson, the Novo Nordisk Science Foundation, Aarhus University Research Fund, and the Oticon Foundation.
    Keywords: Toothed whale ; Ultrasound ; Recording ; Click ; Hydrophone ; Array ; Echolocation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...