GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Estuarine, Coastal and Shelf Science, 200 . pp. 380-394.
    Publication Date: 2021-02-08
    Description: This study reports for the first time boreal to subarctic intertidal foraminiferal assemblages from saltmarshes at Borgarnes and Faskrudsfjördur on Iceland. The composition of living and dead foraminiferal assemblages was investigated along transects from the tidal flat to the highest reach of halophytic plants. The foraminiferal assemblages from Borgarnes showed 18 species in the total foraminiferal assemblage of which only 7 species were recorded in the living fauna. The assemblages were dominated by agglutinated taxa, whereas 3 calcareous species were recorded, of which only Haynesina orbicularis was found in the living fauna. The distribution limit of calcifying species corresponds to the lower boundary of the lower saltmarsh vegetation zone. Furthermore, calcareous tests showed many features of dissolution, which is an indication of a carbonate corrosive environment. The species forming the dead assemblages were mainly derived from the ambient intertidal areas and were displaced by tidal currents into the saltmarsh. The foraminiferal assemblages from Faskrudsfjördur showed two species, of which only one species was recorded in the living fauna. The assemblage was dominated by the agglutinated foraminifer Trochaminita irregularis. The foraminiferal species recorded on Iceland were the same as commonly found elsewhere in Europa. Since no species was found which is endemic to North America, Iceland is considered part of the European bio province. The foraminiferal could have been immigrated to Iceland from Europe through warm water currents, migratory birds or marine traffic since the last Ice Age.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität, Kiel, 171 pp
    Publication Date: 2017-01-19
    Keywords: Course of study: MSc Geoscience
    Type: Thesis , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2023-02-08
    Description: We describe for the first time subtropical intertidal foraminiferal assemblages from beach sands on São Vincente, Cape Verdes. Sixty-five benthic foraminiferal species were recognised, representing 47 genera, 31 families, and 8 superfamilies. Endemic species were not recognised. The new checklist largely extends an earlier record of nine benthic foraminiferal species from fossil carbonate sands on the island. Bolivina striatula, Rosalina vilardeboana and Millettiana milletti dominated the living (rose Bengal stained) fauna, while Elphidium crispum, Amphistegina gibbosa, Quinqueloculina seminulum, Ammonia tepida, Triloculina rotunda and Glabratella patelliformis dominated the dead assemblages. The living fauna lacks species typical for coarse-grained substrates. Instead, there were species that had a planktonic stage in their life cycle. The living fauna therefore received a substantial contribution of floating species and propagules that may have endured a long transport by surface ocean currents. The dead assemblages largely differed from the living fauna and contained redeposited tests deriving from a rhodolith-mollusc carbonate facies at 〈20 m water depth. A comparison of the Recent foraminiferal inventory with other areas identified the Caribbean and Mediterranean as the most likely source regions. They have also been constrained as origin points for littoral to subtidal macroorganisms on other Cape Verdean islands. Micro-and macrofaunal evidences assigned the Cape Verde Current and North Equatorial Current as the main trajectories for faunal immigrations. The contribution from the NW African coast was rather low, a pattern that cannot be explained by the currently available information.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8 – 9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16‐15 Ma) and across the major global cooling (~13.9‐13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area towards the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-24
    Description: We collected a suite of core top samples during R/V Sonne Cruise SO257 in May 2017 along the southwestern front of the Indo‐Pacific Warm Pool (IPWP) to monitor the variability of Southern Hemisphere tropical and subtropical sea surface hydrology and to assess temperature and salinity reconstructions with data sets reflecting conditions in the post‐monsoonal season. In our core top samples, a steep increase in planktic δ18O, associated with a decrease in sea surface temperature (SST), indicates that the southwestern front of the IPWP is located between 23° and 24°S during austral fall. We additionally reconstructed SST, sea surface salinity ,and δ18O seawater (δ18Osw) over the last 450 kyr in two sediment successions located within and beyond the monsoonal rain belt. Our records show that SST was highly coherent and phase‐locked with atmospheric pCO2 during the last 450 kyr. The regional differences in the δ18Osw records reveal that the Western Australian Margin north of 15°S remained seasonally under the influence of IPWP water masses, even during glacials. The temporal variability in upper ocean hydrology along the Western Australian Margin is not directly coupled to local monsoonal precipitation, but is strongly affected by advective mixing of Indonesian Throughflow derived water masses.
    Description: Key Points: Southwest front of modern Indo‐Pacific Warm Pool (IPWP) during austral fall is located between 23° and 24°S. Western Australian Margin north of 15°S remained seasonally influenced by IPWP throughout past 450 kyr. Upper ocean hydrology off Western Australia represents an integrated signal of monsoonal precipitation and advective mixing.
    Description: China Scholarship Council
    Description: German Federal Ministry of Education and Research
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-21
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: Key Points: A consistent mix of clay sources contributed to the Bay of Bengal throughout the middle to late Miocene A marked change in detrital Sr, Nd, and Pb isotope variability at 13.5 Ma was related to Miocene global cooling Transient orbital‐scale fluctuations in clay source most likely reflect changes in monsoon intensity
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 551 ; Bay of Bengal ; IODP Site U1443 ; Miocene ; sediment provenance ; Himalayas ; weathering ; erosion
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bretschneider, L., Hathorne, E. C., Huang, H., Luebbers, J., Kochhann, K. G. D., Holbourn, A., Kuhnt, W., Thiede, R., Gebregiorgis, D., Giosan, L., & Frank, M. Provenance and weathering of clays delivered to the Bay of Bengal during the middle Miocene: linkages to tectonics and monsoonal climate. Paleoceanography and Paleoclimatology, 36(2), (2021): e2020PA003917, https://doi.org/10.1029/2020PA003917.
    Description: Tectonics and regional monsoon strength control weathering and erosion regimes of the watersheds feeding into the Bay of Bengal, which are important contributors to global climate evolution via carbon cycle feedbacks. The detailed mechanisms controlling the input of terrigenous clay to the Bay of Bengal on tectonic to orbital timescales are, however, not yet well understood. We produced orbital‐scale resolution geochemical records for International Ocean Discovery Program Site U1443 (southern Bay of Bengal) across five key climatic intervals of the middle to late Miocene (15.8–9.5 Ma). Our new radiogenic Sr, Nd, and Pb isotope time series of clays transported to the Ninetyeast Ridge suggest that the individual contributions from different erosional sources overall remained remarkably consistent during the Miocene despite major tectonic reorganizations in the Himalayas. On orbital timescales, however, high‐resolution data from the five investigated intervals show marked fluctuations of all three isotope systems. Interestingly, the variability was much higher within the Miocene Climatic Optimum (around 16–15 Ma) and across the major global cooling (~13.9–13.8 Ma) until ~13.5 Ma, than during younger time intervals. This change is attributed to a major restriction on the supply of High Himalayan erosion products due to migration of the peak precipitation area toward the frontal domains of the Himalayas and the Indo‐Burman Ranges. The transient excursions of the radiogenic isotope signals on orbital timescales most likely reflect climatically driven shifts in monsoon strength.
    Description: This research used samples and data provided by the International Ocean Discovery Program and was funded by the German Research Foundation (DFG) (grants HA 5751/6‐1 and HA 5751/6‐2, KU 649/36‐1, and TH 1317‐8 and TH 1317‐9). Open access funding enabled and organized by Projekt DEAL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-30
    Description: We produced orbital-scale resolution geochemical records for International Ocean Discovery Program Site U1443 cored with the RV JOIDES Resolution during IODP Expedition 353 in December 2014 in the southern Bay of Bengal. The Sr, Nd, and Pb isotope compositions of the detrital clay fractions were measured using MC-ICP-MS and span across five key climatic intervals of the middle to late Miocene (15.8 – 9.5 Million years ago). Our new radiogenic isotope time series of clays transported to the Ninetyeast Ridge allow us to distinguish tectonic and climatic forcing of monsoon intensity, weathering regime and erosion intensity of the watersheds feeding into the Bay of Bengal.
    Keywords: 353-U1443; AGE; Bay of Bengal; COMPCORE; Composite Core; detrital clays; Exp353; Joides Resolution; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, standard deviation; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, standard deviation; Lead-207/Lead-206 ratio; Lead-207/Lead-206 ratio, standard deviation; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, standard deviation; Lead-208/Lead-206 ratio; Lead-208/Lead-206 ratio, standard deviation; Lead-208/Lead-207 ratio; Lead-208/Lead-207 ratio, standard deviation; Miocene; Radiogenic isotopes; Sample ID; Site; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, standard deviation; Weathering; ε-Neodymium; ε-Neodymium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 2392 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lübbers, Julia; Kuhnt, Wolfgang; Holbourn, Ann E; Bolton, Clara T; Gray, Emmeline; Usui, Yoichi; Kochhann, Karlos Guilherme Diemer; Beil, Sebastian; Andersen, Nils (2019): The Middle to Late Miocene "Carbonate Crash" in the Equatorial Indian Ocean. Paleoceanography and Paleoclimatology, 34(5), 813-832, https://doi.org/10.1029/2018PA003482
    Publication Date: 2023-02-24
    Description: We integrate benthic foraminiferal stable isotopes, X-ray fluorescence elemental ratios, and carbonate accumulation estimates in a continuous sedimentary archive recovered at International Ocean Discovery Program Site U1443 (Ninetyeast Ridge, Indian Ocean) to reconstruct changes in carbonate deposition and climate evolution over the interval 13.5 to 8.2 million years ago. Declining carbonate percentages together with a marked decrease in carbonate accumulation rates after ~13.2 Ma signal the onset of a prolonged episode of reduced carbonate deposition. This extended phase, which lasted until ~8.7 Ma, coincides with the middle to late Miocene Carbonate Crash, originally identified in the eastern equatorial Pacific Ocean and the Caribbean Sea. Inter-ocean comparison reveals that intense carbonate impoverishment at Site U1443 (~11.5 to ~10 Ma) coincides with prolonged episodes of reduced carbonate deposition in all major tropical ocean basins. This implies that global changes in the intensity of chemical weathering and riverine input of calcium and carbonate ions into the ocean reservoir were instrumental in driving the Carbonate Crash. An increase in U1443 Log(Ba/Ti) together with a change in sediment color from red to green indicate a rise in organic export flux to the sea floor after ~11.2 Ma, which predates the global onset of the Biogenic Bloom. This early rise in export flux from biological production may have been linked to increased advection of nutrients and intensification of upper ocean mixing, associated with changes in the seasonality and intensity of the Indian Monsoon.
    Keywords: Carbonate Crash; Indian Ocean; Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP; stable carbon isotopes; stable oxygen isotopes; XRF
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...