GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2020-02-06
    Description: We investigated the onset and development of Cretaceous Oceanic Anoxic Event 2 (OAE2) in a newly drilled core (SN degrees 4) from the Tarfaya Basin (southern Morocco), where this interval is unusually expanded. High-resolution (centimeter-scale equivalent to centennial) analysis of bulk organic and carbonate stable isotopes and of carbonate and organic carbon content in combination with XRF scanner derived elemental distribution reveal that the ocean-climate system behaved in a highly dynamic manner prior to and during the onset of OAE2. Correlation with the latest orbital solution indicates that the main carbon isotope shift occurred during an extended minimum in orbital eccentricity (similar to 400 kyr cycle). Shorter-term fluctuations in carbonate and organic carbon accumulation and in sea level related terrigenous discharge were predominantly driven by variations in orbital obliquity. Negative excursions in organic and carbonate delta C-13 preceded the global positive delta C-13 shift marking the onset of OAE2, suggesting injection of isotopically depleted carbon into the atmosphere. The main delta C-13 increase during the early phase of OAE2 in the late Cenomanian was punctuated by a transient plateau. Maximum organic carbon accumulation occurred during the later part of the main delta C-13 increase and was associated with climate cooling events, expressed as three consecutive maxima in bulk carbonate delta O-18. The extinctions of the thermocline dwelling keeled planktonic foraminifers Rotalipora greenhornensis and Rotalipora cushmani occurred during the first and last of these cooling events and were likely associated with obliquity paced, ocean-wide expansions, and intensifications of the oxygen minimum zone, affecting their habitat space on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • Complete upper Albian to early Turonian climate archive in drilled core from Tarfaya Basin. • Eccentricity pacing of mid Cretaceous OAE isotope excursions. • MCE and OAE2 associated with climate cooling and sea level fall. Abstract A 325 m long continuous succession of uppermost Albian to lower Turonian pelagic (outer shelf) deposits was recovered from a new drill site in the central part of the Tarfaya Basin (southern Morocco). Natural gamma ray wireline logging, carbonate and organic carbon content, bulk carbonate and organic carbon stable isotopes and X-ray fluorescence (XRF)-scanner derived elemental distribution data in combination with planktonic foraminiferal biostratigraphy indicate complete recovery of the Cenomanian Stage. This exceptional sediment archive allows to identify orbitally driven cyclic sedimentation patterns and to evaluate the pacing of climatic events and regional environmental change across the Albian-Cenomanian boundary (ACB), the mid-Cenomanian Event (MCE) and Oceanic Anoxic Event 2 (OAE2) in the latest Cenomanian. The deposition of organic-rich sediments in the Tarfaya Basin, likely driven by upwelling of nutrient-rich water masses, started during the latest Albian and intensified in two major steps following the MCE and the onset of OAE2. The duration and structure of the MCE and OAE2 carbon isotope excursions exhibit striking similarities, suggesting common driving mechanisms and climate-carbon cycle feedbacks. Both events were also associated with eustatic sea level falls, expressed as prominent sequence boundaries in the Tarfaya Basin. Based on the 405 kyr signal imprinted on the Natural Gamma Ray (NGR) and XRF-scanner derived Log(Zr/Rb) records, we estimate the duration of the Cenomanian Stage to be 4.8 ± 0.2 Myr.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Cushman Foundation for Foraminiferal Research
    In:  The Journal of Foraminiferal Research, 46 (3). pp. 224-236.
    Publication Date: 2021-01-13
    Description: Deep-sea calcareous sediments are subject to dissolution that can alter the appearance and geochemistry of planktonic foraminiferal tests and faunal assemblages. Assessment of the impact of dissolution is often based on assumptions [e.g., position of a sediment sample with respect to the seawater calcite-saturation horizon (CSH)] and elaborate techniques (e.g., scanning-electron microscopy). To assess dissolution effects on calcareous sediments, we weighed and photographed tests of Pulleniatina obliquiloculata from South China Sea (SCS) sediment-surface samples spanning deposition above the CSH down to the calcite-compensation depth. Controlled by the calcite-saturation state of bottom waters (Δ[CO32−]bw), the observed decrease in test weights by ~0.3 μg per μmol kg−1 was accompanied by decreasing Mg/Ca ratios (~0.12 mmol mol−1 per μg) and increasing stable oxygen isotope values δ18O; ~−0.13‰ per μg). Concomitant changes in test appearance demonstrated the potential of P. obliquiloculata to indicate distinct preservation stages. We present an economical, fast and non-destructive guideline to evaluate sediment preservation based on P. obliquiloculata appearance under a light microscope. In addition to the initial P. obilquiloculata test preservation, characterized by a smooth and shiny surface of slightly brownish-pinkish color in samples deposited in bottom waters with a Δ[CO32−]bw〉21 μmol kg−1 (no dissolution), three dissolution stages can be distinguished: 1) Gentle dissolution (Δ[CO32−]bw ~10–21 μmol kg−1, little alteration of planktonic foraminiferal Mg/Ca and δ18O) indicated by slightly brownish-pinkish tests with smooth and shiny surfaces only slightly damaged by fissures on top of the pores along the test’s periphery; 2) Moderate dissolution (Δ[CO32−]bw ~0–10 μmol kg−1, clear alteration of Mg/Ca and δ18O) with extensive disintegration and coexistence of both slightly brownish-pinkish tests and white tests with initially smooth surfaces already decayed to small prismatic units; 3) Severe dissolution (Δ[CO32−]bw 〈0 μmol kg−1, significant alteration of planktonic foraminiferal Mg/Ca and δ18O) indicated by only white tests showing several calcite layers, holes and broken final chambers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Oceanic Anoxic Events (OAEs) document major perturbations of the global carbon cycle with repercussions on the Earth’s climate and ocean circulation that are relevant to understand future climate trends. Here, we compare sedimentation patterns, nutrient cycling, organic carbon accumulation and carbon isotope variability across Cretaceous Oceanic Anoxic Events OAE1a and OAE2 in two drill cores with unusually high sedimentation rates from the Vocontian Basin (southern France) and Tarfaya Basin (southern Morocco). OAE1a and OAE2 exhibit remarkable similarities in the evolution of their δ13C excursion with long-lasting negative carbon isotope excursions preceding the onset of both anoxic events, supporting the view that OAEs were triggered by massive emissions of volcanic CO2 into the atmosphere. Based on analysis of cyclic sediment variations, we estimated the duration of the individual phases within the carbon isotope excursions. For both events, we identify: (1) a precursor phase lasting ~ 430 kyr and ~ 130 kyr, (2) an onset phase of ~ 390 and ~ 70 kyr, (3) a peak phase of ~ 600 and ~ 90 kyr, (4) a plateau phase of ~ 1400 and ~ 200 kyr and (5) a recovery phase of ~ 630 and ~ 440 kyr, respectively. The total duration of the positive carbon isotope excursion is estimated as 3400 kyr and 790 kyr and that of the main carbon accumulation phase as 980 kyr and 180 kyr, for OAE1a and OAE 2 respectively. The extended duration of the peak, plateau and recovery phases requires fundamental changes in global nutrient cycles either (1) through excess nutrient inputs to the oceans by increasing continental weathering and river discharge or (2) through nutrient-recycling from the marine sediment reservoir. We investigated the role of phosphorus on the development of carbon accumulation by analysing phosphorus speciation across OAE2 and the mid-Cenomanian Event (MCE) in the Tarfaya Basin. The ratios of organic carbon and total nitrogen to reactive phosphorus (Corg/Preact and Ntotal/Preact) prior to OAE2 and the MCE hover close to or below the Redfield ratio characteristic of marine organic matter. Decreases in reactive phosphorus resulting in Corg/Preact and Ntotal/Preact above the Redfield ratio during the later phase of OAE2 and the MCE indicate leakage from the sedimentary column into the water column under the influence of intensified and expanded oxygen minimum zones. These results suggest that a positive feedback loop, rooted in the benthic phosphorus cycle, contributed to increased marine productivity and carbon burial over an extended period of time during OAEs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Highlights • We present a 5 myr record of biogeochemical cycling in a Cretaceous upwelling area. • A novel quantitative approach for the evaluation of Fe speciation proxies was applied. • Ferruginous proxy signature reflects intense chemical weathering rather than anoxia. • Water column redox conditions evolved from oxic to nitrogenous to euxinic before OAE2. • Smaller seawater nitrate inventory facilitated sedimentary H2S release and euxinia. Abstract Oceanic Anoxic Events (OAEs) in Earth's history are regarded as analogues for current and future ocean deoxygenation, potentially providing information on its pacing and internal dynamics. In order to predict the Earth system's response to changes in greenhouse gas concentrations and radiative forcing, a sound understanding of how biogeochemical cycling differs in modern and ancient marine environments is required. Here, we report proxy records for iron (Fe), sulfur and nitrogen cycling in the Tarfaya upwelling system in the Cretaceous Proto-North Atlantic before, during and after OAE2 (∼93 Ma). We apply a novel quantitative approach to sedimentary Fe speciation, which takes into account the influence of terrigenous weathering and sedimentation as well as authigenic Fe (non-terrigenous, precipitated onsite) rain rates on Fe-based paleo-redox proxies. Generally elevated ratios of reactive Fe (i.e., bound to oxide, carbonate and sulfide minerals) to total Fe (FeHR/FeT) throughout the 5 million year record are attributed to transport-limited chemical weathering under greenhouse climate conditions. Trace metal and nitrogen isotope systematics indicate a step-wise transition from oxic to nitrogenous to euxinic conditions over several million years prior to OAE2. Taking into consideration the low terrigenous sedimentation rates in the Tarfaya Basin, we demonstrate that highly elevated FeHR/FeT from the mid-Cenomanian through OAE2 were generated with a relatively small flux of additional authigenic Fe. Evaluation of mass accumulation rates of reactive Fe in conjunction with the extent of pyritization of reactive Fe reveals that authigenic Fe and sulfide precipitation rates in the Tarfaya Basin were similar to those in modern upwelling systems. Because of a smaller seawater nitrate inventory, however, chemolithoautotrophic sulfide oxidation with nitrate was less efficient in preventing hydrogen sulfide release into the water column. As terrigenous weathering and sediment flux determine how much authigenic Fe is required to generate an anoxic euxinic or ferruginous proxy signature, we emphasize that both have to be taken into account when interpreting Fe-based paleo-redox proxies.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-26
    Description: The Cretaceous with extremely high atmospheric pCO2 is one of the warmest periods in the Phanerozoic, providing an endmember to test climate models. Repeated periods of widespread dysoxic / anoxic conditions (Oceanic Anoxic Events; OAEs) were characterized by enhanced burial of organic matter and different degrees of marine faunal turnovers, that can be seen as extreme equivalents for the already observed trend of expanding Oxygen Minimum Zones (OMZ) in modern oceans caused by anthropogenic climate warming. One of the largest OAEs occurring at the Cenomanian / Turonian boundary is OAE2. This thesis presents results from Core SN°4 drilled in the Tarfaya Basin (SW Morocco). This continuous record spanning the time from the late Albian to early Turonian allowed 1) to reconstruct climatic and paleoceanographic variability during this period in the Tarfaya Basin, 2) to unravel climate processes and biospheric changes during the onset of OAE2 and 3) to study phosphorus dynamics during the Cenomanian and early Turonian.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-03-24
    Description: We collected a suite of core top samples during R/V Sonne Cruise SO257 in May 2017 along the southwestern front of the Indo‐Pacific Warm Pool (IPWP) to monitor the variability of Southern Hemisphere tropical and subtropical sea surface hydrology and to assess temperature and salinity reconstructions with data sets reflecting conditions in the post‐monsoonal season. In our core top samples, a steep increase in planktic δ18O, associated with a decrease in sea surface temperature (SST), indicates that the southwestern front of the IPWP is located between 23° and 24°S during austral fall. We additionally reconstructed SST, sea surface salinity ,and δ18O seawater (δ18Osw) over the last 450 kyr in two sediment successions located within and beyond the monsoonal rain belt. Our records show that SST was highly coherent and phase‐locked with atmospheric pCO2 during the last 450 kyr. The regional differences in the δ18Osw records reveal that the Western Australian Margin north of 15°S remained seasonally under the influence of IPWP water masses, even during glacials. The temporal variability in upper ocean hydrology along the Western Australian Margin is not directly coupled to local monsoonal precipitation, but is strongly affected by advective mixing of Indonesian Throughflow derived water masses.
    Description: Key Points: Southwest front of modern Indo‐Pacific Warm Pool (IPWP) during austral fall is located between 23° and 24°S. Western Australian Margin north of 15°S remained seasonally influenced by IPWP throughout past 450 kyr. Upper ocean hydrology off Western Australia represents an integrated signal of monsoonal precipitation and advective mixing.
    Description: China Scholarship Council
    Description: German Federal Ministry of Education and Research
    Keywords: ddc:551.46
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Joides Resolution; North west Australian continental margin; Potassium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 6120 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Isotope ratio mass spectrometry; Joides Resolution; North west Australian continental margin; Planulina wuellerstorfi, δ18O
    Type: Dataset
    Format: text/tab-separated-values, 174 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-24
    Keywords: 363-U1483; AGE; Aluminium; Calcium; Chlorine; COMPCORE; Composite Core; DEPTH, sediment/rock; Exp363; IMAGES; Integrated Ocean Drilling Program / International Ocean Discovery Program; International Marine Global Change Study; IODP; Iron; Joides Resolution; North west Australian continental margin; Potassium; Titanium; X-ray fluorescence core scanner (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 12240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...