GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-04
    Description: We use a global 5‐km resolution model to analyze the air‐sea interactions during a katabatic storm in the Irminger Sea originating from the Ammassalik valleys. Katabatic storms have not yet been resolved in global climate models, raising the question of whether and how they modify water masses in the Irminger Sea. Our results show that dense water forms along the boundary current and on the shelf during the katabatic storm due to the heat loss caused by the high wind speeds and the strong temperature contrast. The dense water contributes to the lightest upper North Atlantic Deep Water as upper Irminger Sea Intermediate Water and thus to the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). The katabatic storm triggers a polar low, which in turn amplifies the near‐surface wind speed due to the superimposed pressure gradient, in addition to acceleration from a breaking mountain wave. Overall, katabatic storms account for up to 25% of the total heat loss (20 January 2020 to 30 September 2021) over the Irminger shelf of the Ammassalik area. Resolving katabatic storms in global models is therefore important for the formation of dense water in the western boundary current of the Irminger Sea, which is relevant to the AMOC, and for the large‐scale atmospheric circulation by triggering polar lows.
    Description: Plain Language Summary: Katabatic storms are outbursts of cold air associated with strong winds from coastal valleys of Greenland, in particular from the Ammassalik valleys in southeast Greenland. These storms are not resolved in global climate models because of their small spatial extent. However, they are important for the formation of dense water on the Irminger Sea shelf, because they induce a substantial heat loss from the coastal water. In this study, we resolve katabatic storms for the first time in a global climate model and analyze the water transformation caused by a single storm before quantifying the importance of katabatic storms for the entire simulation period. We find that a water mass is formed during the katabatic storm that is dense enough to contribute to the cooling and sinking of the global conveyor belt in the subpolar North Atlantic. Overall, katabatic storms account for up to 25% of the heat loss over the Irminger shelf of the Ammassalik area.
    Description: Key Points: For the first time, the direct effect of a katabatic storm on the Irminger Sea has been simulated in a global climate model. The katabatic storm induces strong heat loss and dense water formation over the Irminger shelf (Sermilik Trough) and in the boundary current. Dense water forming in the western boundary current during katabatic storms contributes to the lightest upper North Atlantic Deep Water.
    Description: Collaborative Research Centre TRR181 funded by DFG
    Description: Max Planck Society for Advancement of Science
    Description: NextGEMS
    Description: European Union’s Horizon 2020
    Description: https://hdl.handle.net/21.11116/0000-0008-ECF1-E
    Description: https://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_033_ds00010
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-25
    Description: We describe the ocean general circulation model Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) of the Max Planck Institute for Meteorology, which forms the ocean‐sea ice component of the Earth system model ICON‐ESM. ICON‐O relies on innovative structure‐preserving finite volume numerics. We demonstrate the fundamental ability of ICON‐O to simulate key features of global ocean dynamics at both uniform and non‐uniform resolution. Two experiments are analyzed and compared with observations, one with a nearly uniform and eddy‐rich resolution of ∼10 km and another with a telescoping configuration whose resolution varies smoothly from globally ∼80 to ∼10 km in a focal region in the North Atlantic. Our results show first, that ICON‐O on the nearly uniform grid simulates an ocean circulation that compares well with observations and second, that ICON‐O in its telescope configuration is capable of reproducing the dynamics in the focal region over decadal time scales at a fraction of the computational cost of the uniform‐grid simulation. The telescopic technique offers an alternative to the established regionalization approaches. It can be used either to resolve local circulation more accurately or to represent local scales that cannot be simulated globally while remaining within a global modeling framework.
    Description: Plain Language Summary: Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) is a global ocean general circulation model that works on unstructured grids. It rests on novel numerical techniques that belong to the class of structure‐preserving finite Volume methods. Unstructured grids allow on the one hand a uniform coverage of the sphere without resolution clustering, and on the other hand they provide the freedom to intentionally cluster grid points in some region of interest. In this work we run ICON‐O on an uniform grid of approximately 10 km resolution and on a grid with four times less degrees of freedom that is stretched such that in the resulting telescoping grid within the North Atlantic the two resolutions are similar, while outside the focal area the grid approaches smoothly ∼80 km resolution. By comparison with observations and reanalysis data we show first, that the simulation on the uniform 10 km grid provides a decent mesoscale eddy rich simulation and second, that the telescoping grid is able to reproduce the mesoscale rich circulation locally in the North Atlantic and on decadal time scales. This telescoping technique of unstructured grids opens new research directions.
    Description: Key Points: We describe Icosahedral Nonhydrostatic Weather and Climate Model (ICON‐O) the ocean component of ICON‐ESM 1.0, based on the ICON modeling framework. ICON‐O is analyzed in a globally mesoscale‐rich simulation and in a telescoping configuration. In telescoping configuration ICON‐O reproduces locally the eddy dynamics with less computational costs than the uniform configuration.
    Description: https://swiftbrowser.dkrz.de/public/dkrz_07387162e5cd4c81b1376bd7c648bb60/kornetal2021
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-availability
    Keywords: ddc:551.46 ; ocean modeling ; ocean dynamics ; unstructured grid modeling ; local refinement ; structure preservation numerics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The last interglaciation (~130 to 116 ka) is a time period with a strong astronomically induced seasonal forcing of insolation compared to the present. Proxy records indicate a significantly different climate to that of the modern, in particular Arctic summer warming and higher eustatic sea level. Because the forcings are relatively well constrained, it provides an opportunity to test numerical models which are used for future climate prediction. In this paper we compile a set of climate model simulations of the early last interglaciation (130 to 125 ka), encompassing a range of model complexities. We compare the simulations to each other and to a recently published compilation of last interglacial temperature estimates. We show that the annual mean response of the models is rather small, with no clear signal in many regions. However, the seasonal response is more robust, and there is significant agreement amongst models as to the regions of warming vs cooling. However, the quantitative agreement of the model simulations with data is poor, with the models in general underestimating the magnitude of response seen in the proxies. Taking possible seasonal biases in the proxies into account improves the agreement, but only marginally. However, a lack of uncertainty estimates in the data does not allow us to draw firm conclusions. Instead, this paper points to several ways in which both modelling and data could be improved, to allow a more robust model–data comparison.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-12
    Description: This study explores the effects of the Changjiang (also called the Yangtze River) river discharge (CRD) on the density stratifications and associated sea surface temperature (SST) changes using a global ocean general circulation model with regional focus on the Yellow and East China Seas (YECS). It is found that CRD increases the SST in summer through a barrier layer (BL) formation that tends to enhance stratification at the mixed layer base, and thus reduces both vertical mixing and entrainment. This process is effective, particularly in August, after the CRD reaches its maximum in July. The SST difference between the composites of flood and drought years confirms that the surface warming is related to surface freshening by the CRD. This result suggests that the BL induced by the CRD is an important contributor to the surface heat budget in the YECS.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: Workshop on Seasonal Prediction, 04.-07.06, Barcelona, Spain .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 . L11701.
    Publication Date: 2017-11-08
    Description: Observed multidecadal variability (30 yr running means, trends, and moving standard deviations) of the North Atlantic Oscillation (NAO) during the instrumental record is compared to that simulated by two different coupled general circulation models in extended-range control experiments. Simulated NAO exhibits strong low frequency fluctuations, even on multi-centennial time scale. Observed multi-decadal NAO variations agree well with the model variability. Trend probability distribution functions, observed and simulated, were not found to be different with statistical significance. Thus, multi-decadal NAO changes similar to those observed during the instrumental record, including the recent increase in 1965–1995, may be internally generated within the coupled atmosphere-ocean system without considering external forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Talk] In: Second International Conference on Earth System Modelling, 27.-31.08, Hamburg .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Invited talk] In: International Workshop on Global Change Projection: Modeling, Intercomparison, and Impact Assessment jointly with 2nd International Workshop on KAKUSHIN Program, 18.-20-02, Yokohama, Japan .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-13
    Description: Decadal and bi-decadal climate responses to tropical strong volcanic eruptions (SVEs) are inspected in an ensemble simulation covering the last millennium based on the Max Planck Institute—Earth system model. An unprecedentedly large collection of pre-industrial SVEs (up to 45) producing a peak annual-average top-of-atmosphere radiative perturbation larger than −1.5 Wm−2 is investigated by composite analysis. Post-eruption oceanic and atmospheric anomalies coherently describe a fluctuation in the coupled ocean–atmosphere system with an average length of 20–25 years. The study provides a new physically consistent theoretical framework to interpret decadal Northern Hemisphere (NH) regional winter climates variability during the last millennium. The fluctuation particularly involves interactions between the Atlantic meridional overturning circulation and the North Atlantic gyre circulation closely linked to the state of the winter North Atlantic Oscillation. It is characterized by major distinctive details. Among them, the most prominent are: (a) a strong signal amplification in the Arctic region which allows for a sustained strengthened teleconnection between the North Pacific and the North Atlantic during the first post-eruption decade and which entails important implications from oceanic heat transport and from post-eruption sea ice dynamics, and (b) an anomalous surface winter warming emerging over the Scandinavian/Western Russian region around 10–12 years after a major eruption. The simulated long-term climate response to SVEs depends, to some extent, on background conditions. Consequently, ensemble simulations spanning different phases of background multidecadal and longer climate variability are necessary to constrain the range of possible post-eruption decadal evolution of NH regional winter climates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...