GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2017-07-24)
    Abstract: Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγ High /RXRα S427F/Y impairs CD8 + T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic “immuno-oncogenes” that modulate the immune microenvironment of cancer.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-06-04)
    Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-01-11)
    Abstract: Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1 , BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL ( BCL2L1 -encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2017-05-25)
    Abstract: Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome B act complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A–SF3B1 forms a central node for binding to these splicing modulators.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Cell Biology, Springer Science and Business Media LLC, Vol. 16, No. 11 ( 2014-11), p. 1069-1079
    Type of Medium: Online Resource
    ISSN: 1465-7392 , 1476-4679
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1494945-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 24 ( 2017-12-15), p. 6999-7013
    Abstract: Activation of the fibroblast growth factor receptor FGFR4 by FGF19 drives hepatocellular carcinoma (HCC), a disease with few, if any, effective treatment options. While a number of pan-FGFR inhibitors are being clinically evaluated, their application to FGF19-driven HCC may be limited by dose-limiting toxicities mediated by FGFR1–3 receptors. To evade the potential limitations of pan-FGFR inhibitors, we generated H3B-6527, a highly selective covalent FGFR4 inhibitor, through structure-guided drug design. Studies in a panel of 40 HCC cell lines and 30 HCC PDX models showed that FGF19 expression is a predictive biomarker for H3B-6527 response. Moreover, coadministration of the CDK4/6 inhibitor palbociclib in combination with H3B-6527 could effectively trigger tumor regression in a xenograft model of HCC. Overall, our results offer preclinical proof of concept for H3B-6527 as a candidate therapeutic agent for HCC cases that exhibit increased expression of FGF19. Cancer Res; 77(24); 6999–7013. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1185-1185
    Abstract: Genomic characterization of hematologic and solid cancers has revealed recurrent somatic mutations affecting genes encoding the RNA splicing factors SF3B1, U2AF1, SRSF2 and ZRSR2. Recent data reveal that these mutations confer an alteration of function inducing aberrant splicing and rendering spliceosome mutant cells preferentially sensitive to splicing modulation compared with wildtype (WT) cells. Here we describe a novel orally bioavailable small molecule SF3B1 modulator identified through a medicinal chemistry effort aimed at optimizing compounds for preferential lethality in spliceosome mutant cells. H3B-8800 potently binds to WT or mutant SF3b complexes and modulates splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. The selectivity of H3B-8800 was confirmed by observing lack of activity in cells expressing SF3B1R1074H, the SF3B1 mutation previously shown to confer resistance to other splicing modulators. Although H3B-8800 binds both WT and mutant SF3B1, it results in preferential lethality of cancer cells expressing SF3B1K700E, SRSF2P95H, or U2AF1S34F mutations compared to WT cells. In animals xenografted with SF3B1K700E knock-in leukemia K562 cells or mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, oral H3B-8800 treatment demonstrated splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. These data were also evident in patient-derived xenografts (PDX) from patients with CMML where H3B-8800 resulted in a substantial reduction of leukemic burden only in SRSF2-mutant but not in WT CMML PDX models. Additionally, due to the high frequency of U2AF1 mutations in non-small cell lung cancer, H3B-8800 was tested in U2AF1S34F-mutant H441 lung cancer cells. Similar to the results from leukemia models, H3B-8800 demonstrated preferential lethality of U2AF1-mutant cells in vitro and in in vivo orthotopic xenografts at well tolerated doses. RNA-seq of isogenic K562 cells treated with H3B-8800 revealed dose-dependent inhibition of splicing. Although global inhibition of RNA splicing was not observed; H3B-8800 treatment led to preferential intron retention of transcripts with shorter and more GC-rich regions compared to those unaffected by drug. Interestingly, H3B-8800-retained introns commonly disrupted the expression of spliceosomal genes, suggesting that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the dependency of these cells on expression of WT spliceosomal genes. These data identify a novel therapeutic approach with selective lethality in leukemias and lung cancers bearing a spliceosome mutation. Despite the essential nature of splicing, cancer cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML, and CMML. Citation Format: Silvia Buonamici, Akihide Yoshimi, Michael Thomas, Michael Seiler, Betty Chan, Benjamin Caleb, Fred Csibi, Rachel Darman, Peter Fekkes, Craig Karr, Gregg Keaney, Amy Kim, Virginia Klimek, Pavan Kumar, Kaiko Kunii, Stanley Chun-Wei Lee, Xiang Liu, Crystal MacKenzie, Carol Meeske, Yoshiharu Mizui, Eric Padron, Eunice Park, Ermira Pazolli, Sudeep Prajapati, Nathalie Rioux, Justin Taylor, John Wang, Markus Warmuth, Huilan Yao, Lihua Yu, Ping Zhu, Omar Abdel-Wahab, Peter Smith. H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1185. doi:10.1158/1538-7445.AM2017-1185
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B125-B125
    Abstract: Refractory Anemia with Ringed Sideroblasts (RARS), a subtype of Myelodysplatic Syndrome (MDS), occurs with a high frequency of hotspot mutations in HEAT (Huntingtin, Elongation factor 3, protein phosphatase 2A, Targets of rapamycin 1 domains) domains of SF3B1. This protein component of the U2 snRNP complex of the spliceosome is essential in the proper selection and usage of 3' splice sites. RNAseq analysis of MDS and other tumor types in which SF3B1 hotspot mutations have been found show that alternative 3' splice site usage is the predominant cause of RNA transcript aberration. These modifications can result in mRNAs encoding novel peptides, or they can introduce premature termination codons into the pre-mRNA, most likely directing it to the Nonsense Mediated Decay (NMD) pathway for degradation. Using a predictive tool to determine the likelihood of a given aberrant transcript to be targeted for NMD, we determined that nearly 50% of the SF3B1-mutant-associated aberrant transcripts were candidates for degradation. We confirmed this experimentally by treating isogenic Nalm-6 cells (engineered by AAV homology to express SF3B1 K700E or K700K) with or without cycloheximide, an agent known to inhibit translation and RNA degradation by NMD. Investigation of the resulting RNAseq data showed significant rescue of gene expression only for the transcripts predicted to be NMD targets. Ingenuity Pathway Analysis indicated that many of the downregulated genes in SF3B1 mutant samples were involved in differentiation, which has been shown to be dysregulated in MDS. We tested the idea that such modifications in the transcriptome confer selective advantage or impair differentiation in SF3B1 mutant cells. We began by manipulating the expression of ABCB7, one of the genes identified in our RNAseq analysis to be downregulated by aberrant splicing and subsequent NMD. ABCB7 is a mitochondrial transporter important in cellular iron metabolism and, indirectly, in heme production. Additionally, loss of function of ABCB7 is causal in X-linked sideroblastic anemia and has been implicated in RARS MDS. We discovered in our SILAC proteomic analysis that ABCB7 protein was dramatically decreased in K700E SF3B1 Nalm-6 cells relative to K700K Nalm-6, in agreement with our RNAseq analysis. Using doxycycline-inducible shRNA expression, we knocked down ABCB7 mRNA and protein expression in TF-1 erythroblasts. These cells show significant decreases in erythropoeitin (EPO)-induced differentiation when expressing exogenous K700E SF3B1, but not K700R (a very conservative mutation) or WT SF3B1. With direct knock down of ABCB7, we observed a similar phenotype - impairment of EPO-induced differentiation in ABCB7 shRNA-induced cells by Day 7, with no overall decline in cell viability. Interestingly, knock down of SF3B1 expression with shRNA also reduces ABCB7 mRNA. However, it also promotes cell death. This is consistent with the heterozygous nature of SF3B1 hotspot mutations; severe loss of SF3B1 function is deleterious. We propose that hotspot SF3B1 mutants promote aberrant splicing of multiple genes, inducing a general “spliceosomal sickness” in addition to downregulating key genes (e.g. ABCB7) responsible for erythroid differentiation impairment, such as that observed in RARS. Citation Format: Rachel B. Darman, Samantha A. Perino, Michael Seiler, Shouyong Peng, Jacob Feala, Peter Fekkes, Gregg F. Keaney, Kaiko Kunii, Linda Lee, Kian Huat Lim, Yoshiya Oda, Khin Myint, Esther A. Obeng, Ermira Pazolli, Eun Sun Park, John Yuan Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Benjamin L. Ebert, Peter G. Smith, Silvia Buonamici. Mutant SF3B1 downregulates proteins involved in differentiation, including ABCB7. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B125.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2012
    In:  European Journal of Pharmacology Vol. 680, No. 1-3 ( 2012-04), p. 55-62
    In: European Journal of Pharmacology, Elsevier BV, Vol. 680, No. 1-3 ( 2012-04), p. 55-62
    Type of Medium: Online Resource
    ISSN: 0014-2999
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 1483526-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 966-966
    Abstract: Mutations in RNA splicing factors confer an alteration of function and are common in patients with myelodysplastic syndrome (MDS, ~45%), chronic myelomonocytic leukemia (CMML, ~60%), and acute myeloid leukemia (AML) derived from these conditions. Recent data suggest that spliceosome-mutant cells are preferentially sensitive to genetic or pharmacologic splicing modulation compared with wildtype (WT) counterparts. Here, we describe the discovery of H3B-8800, a potent and orally bioavailable modulator of the SF3b complex, and demonstrate efficacy in models of spliceosome mutant myeloid malignancies including a novel xenograft system for CMML. H3B-8800 was identified through a medicinal chemistry approach aimed at identifying compounds with preferential lethality in spliceosome mutant cells. Using a scintillation proximity assay, we demonstrated that H3B-8800 potently binds to SF3b complexes containing either WT or mutant SF3B1 protein. Consistent with this, H3B-8800 showed dose-dependent modulation of splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. Selectivity of H3B-8800 for the SF3b complex was confirmed through observing resistance in cells expressing SF3B1R1074H, an SF3B1 mutation previously shown to confer resistance to natural product splicing modulators. In the above biochemical and cellular assays, H3B-8800 affected splicing similarly regardless of spliceosome genotype. However, preferential inhibition of in vitro cell growth was observed in isogenic AML cells with endogenous knock-in of SF3B1K700E or SRSF2P95H mutations compared to WT counterparts. In animals xenografted with SF3B1K700E knock-in K562 cells, oral H3B-8800 treatment demonstrated dose-dependent splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. Similarly, anti-leukemic efficacy and improved survival were observed with H3B-8800 treatment in mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, a result not seen in Srsf2 WT/MLL-AF9 counterpart leukemias. To understand the preferential effects on spliceosome mutant cells, RNA-seq analysis of isogenic K562 cells treated with H3B-8800 was performed. H3B-8800 induced intron retention and exon skipping, however these effects were not global and introns preferentially retained by H3B-8800 were shorter and more GC-rich compared to those unaffected by drug (Figure A). Interestingly, a substantial number of genes experiencing intron retention with H3B-8800 themselves encoded spliceosome components (Figure B). This suggests that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the exquisite dependency of these cells on normal expression of spliceosome proteins. Next we aimed to understand the therapeutic potential of H3B-8800 in the context of CMML due to the high frequency of SRSF2 mutations and the need for improved outcome in this disorder. To this end, we developed a xenotransplantation model through direct intrafemoral injection of CD34+ cells from CMML patients into "NSGS" mice: a variant of NSG mice that express human IL3, SCF and GM-CSF. We specifically focused on CMML with 〈 10% marrow blasts. Surprisingly, injection of 〉 200,000 CD34+ cells achieved robust engraftment for all patients (n=7) with rapid lethality (median of 39 days). In vivo H3B-8800 administration substantially reduced leukemic burden in spliceosome-mutant but not spliceosome-WT CMML PDX (Figure C). Furthermore, 2.2-fold reductions in immunophenotypically-defined leukemia initiating cells were seen with H3B-8800 versus vehicle treatment in spliceosome-mutant CMML compared with no change in those mice engrafted with spliceosome-WT CMML. These data identify a novel therapeutic approach with selective lethality in myeloid cells bearing a spliceosome mutation. Despite the essential nature of splicing, CMML/AML cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. These data demonstrate the therapeutic potential of splicing modulation in spliceosome mutant cancers and H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML and CMML. Figure. Figure. Disclosures Buonamici: H3 Biomedicine: Employment. Thomas:H3 Biomedicine: Employment. Seiler:H3 Biomedicine: Employment. Chan:H3 Biomedicine: Employment. Caleb:H3 Biomedicine: Employment. Darman:H3 Biomedicine: Employment. Fekkes:H3 Biomedicine: Employment. Karr:H3 Biomedicine: Employment. Liu:H3 Biomedicine: Employment. Meeske:H3 Biomedicine: Employment. Mizui:Eisai: Employment. Pazolli:H3 Biomedicine: Employment. Prajapati:H3 Biomedicine: Employment. Wang:Eisai: Employment. Warmuth:H3 Biomedicine: Employment. Yu:H3 Biomedicine: Employment. Zhu:H3 Biomedicine: Employment. Smith:H3 Biomedicine: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...