GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 966-966
    Kurzfassung: Mutations in RNA splicing factors confer an alteration of function and are common in patients with myelodysplastic syndrome (MDS, ~45%), chronic myelomonocytic leukemia (CMML, ~60%), and acute myeloid leukemia (AML) derived from these conditions. Recent data suggest that spliceosome-mutant cells are preferentially sensitive to genetic or pharmacologic splicing modulation compared with wildtype (WT) counterparts. Here, we describe the discovery of H3B-8800, a potent and orally bioavailable modulator of the SF3b complex, and demonstrate efficacy in models of spliceosome mutant myeloid malignancies including a novel xenograft system for CMML. H3B-8800 was identified through a medicinal chemistry approach aimed at identifying compounds with preferential lethality in spliceosome mutant cells. Using a scintillation proximity assay, we demonstrated that H3B-8800 potently binds to SF3b complexes containing either WT or mutant SF3B1 protein. Consistent with this, H3B-8800 showed dose-dependent modulation of splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. Selectivity of H3B-8800 for the SF3b complex was confirmed through observing resistance in cells expressing SF3B1R1074H, an SF3B1 mutation previously shown to confer resistance to natural product splicing modulators. In the above biochemical and cellular assays, H3B-8800 affected splicing similarly regardless of spliceosome genotype. However, preferential inhibition of in vitro cell growth was observed in isogenic AML cells with endogenous knock-in of SF3B1K700E or SRSF2P95H mutations compared to WT counterparts. In animals xenografted with SF3B1K700E knock-in K562 cells, oral H3B-8800 treatment demonstrated dose-dependent splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. Similarly, anti-leukemic efficacy and improved survival were observed with H3B-8800 treatment in mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, a result not seen in Srsf2 WT/MLL-AF9 counterpart leukemias. To understand the preferential effects on spliceosome mutant cells, RNA-seq analysis of isogenic K562 cells treated with H3B-8800 was performed. H3B-8800 induced intron retention and exon skipping, however these effects were not global and introns preferentially retained by H3B-8800 were shorter and more GC-rich compared to those unaffected by drug (Figure A). Interestingly, a substantial number of genes experiencing intron retention with H3B-8800 themselves encoded spliceosome components (Figure B). This suggests that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the exquisite dependency of these cells on normal expression of spliceosome proteins. Next we aimed to understand the therapeutic potential of H3B-8800 in the context of CMML due to the high frequency of SRSF2 mutations and the need for improved outcome in this disorder. To this end, we developed a xenotransplantation model through direct intrafemoral injection of CD34+ cells from CMML patients into "NSGS" mice: a variant of NSG mice that express human IL3, SCF and GM-CSF. We specifically focused on CMML with 〈 10% marrow blasts. Surprisingly, injection of 〉 200,000 CD34+ cells achieved robust engraftment for all patients (n=7) with rapid lethality (median of 39 days). In vivo H3B-8800 administration substantially reduced leukemic burden in spliceosome-mutant but not spliceosome-WT CMML PDX (Figure C). Furthermore, 2.2-fold reductions in immunophenotypically-defined leukemia initiating cells were seen with H3B-8800 versus vehicle treatment in spliceosome-mutant CMML compared with no change in those mice engrafted with spliceosome-WT CMML. These data identify a novel therapeutic approach with selective lethality in myeloid cells bearing a spliceosome mutation. Despite the essential nature of splicing, CMML/AML cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. These data demonstrate the therapeutic potential of splicing modulation in spliceosome mutant cancers and H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML and CMML. Figure. Figure. Disclosures Buonamici: H3 Biomedicine: Employment. Thomas:H3 Biomedicine: Employment. Seiler:H3 Biomedicine: Employment. Chan:H3 Biomedicine: Employment. Caleb:H3 Biomedicine: Employment. Darman:H3 Biomedicine: Employment. Fekkes:H3 Biomedicine: Employment. Karr:H3 Biomedicine: Employment. Liu:H3 Biomedicine: Employment. Meeske:H3 Biomedicine: Employment. Mizui:Eisai: Employment. Pazolli:H3 Biomedicine: Employment. Prajapati:H3 Biomedicine: Employment. Wang:Eisai: Employment. Warmuth:H3 Biomedicine: Employment. Yu:H3 Biomedicine: Employment. Zhu:H3 Biomedicine: Employment. Smith:H3 Biomedicine: Employment.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2016
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1643-1643
    Kurzfassung: Heterozygous mutations in several core members of the spliceosome complex have been reported in Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia (AML). In particular high frequency SF3B1 hotspot mutations, a component of the U2 complex involved in the interaction with the branch point (BP) and recognition of the 3' splice sites (ss) during splicing, have been identified in Refractory Anemia with Ringed Sideroblasts (RARS) a subtype of MDS. Using computational analyses of RNAseq from several cancer types including RARS, we identified that SF3B1 hotspot mutations induce aberrant 3'ss selection by recognizing a cryptic AG located between 15 to 24 nucleotides upstream of the canonical AG. Experimental confirmation of these motif features was performed using minigenes in SF3B1 mutant cells. Furthermore, we discovered that SF3B1 mutant utilized a different BP from that used by SF3B1 wild-type providing novel mechanistic insights into changes in function induced by the hotspot mutations. The induction of aberrant splicing can introduce premature termination codons thus targeting mRNA for degradation by Nonsense Mediated Decay (NMD). We predicted that close to 50% of the aberrantly spliced genes would be subject to NMD and showed (using isogenic Nalm-6 cells engineered by AAV homology to express SF3B1K700E or SF3B1K700K) that several of these genes were downregulated at the transcript and protein levels. These downregulated genes/proteins might be involved in the pathogenesis of SF3B1 mutant cancers. Interestingly, pathway analysis of genes differentially expressed or aberrantly spliced in SF3B1 mutant compared to wild-type in RARS samples identified cell differentiation and epigenetics as the primary misregulated pathways. To study the impact of SF3B1 mutations on differentiation, we used the TF-1 differentiation cell model where erythroid differentiation is induced by treatment with erythropoietin (EPO). EPO treatment, as expected, induced erythroid differentiation in TF-1 cells transduced with SF3B1WT, but a block in erythroid differentiation was observed in TF-1 cells transduced with SF3B1K700E (the most common mutation in MDS and chronic lymphocytic leukemia (CLL)). Intriguingly, SF3B1G742D, which is found mutated in CLL but not MDS, did not block differentiation in this myeloid differentiation model, implying that specific SF3B1 mutations and splicing aberrations have important context dependent effects. Pathway analysis comparing SF3B1K700E vs. SF3B1WT or SF3B1G742D identified several genes involved in heme biosynthesis or downstream of GATA1 to be downregulated (such as, AHSP, ALAS2, CCL5, CD36, EPOR, GP1BB, HBB, HBE1, HBG1, PRG2) in SF3B1K700E cells only. This is consistent with the role of SF3B1K700E in RARS. In our analyses, we also identified that ABCB7 is aberrantly spliced and that the aberrant transcript is subject to NMD, causing downregulation of the canonical transcript and protein. ABCB7 is a mitochondrial transporter important in cellular iron metabolism and in heme production; moreover, partial loss of function mutation in ABCB7 has been identified in X-linked sideroblastic anemia and ataxia, demonstrating an iron overload phenotype in cells with defective ABCB7. Interestingly, when ABCB7 was knocked down in TF-1 cells we observed block in differentiation similar to that observed in SF3B1K700E cells suggesting a link between SF3B1 mutation and ABCB7 levels and impaired differentiation. Taken together, these data suggest that SF3B1 mutations induce aberrant splicing and as a consequence downregulation of several genes that contribute to the block in erythroid differentiation, one of the key biological defects observed in MDS. Disclosures Buonamici: H3 Biomedicine: Employment. Darman:H3 Biomedicine: Employment. Perino:H3 Biomedicine: Employment. Agrawal:H3 Biomedicine: Employment. Peng:H3 Biomedicine: Employment. Seiler:H3 Biomedicine: Employment. Feala:H3 Biomedicine: Employment. Bailey:H3 Biomedicine: Employment. Chan:H3 Biomedicine: Employment. Fekkes:H3 Biomedicine: Employment. Keaney:H3 Biomedicine: Employment. Kumar:H3 Biomedicine: Employment. Kunii:H3 Biomedicine: Employment. Lee:H3 Biomedicine: Employment. Mackenzie:Eisai: Employment. Matijevic:Eisai: Employment. Mizui:H3 Biomedicine: Employment. Myint:Eisai: Employment. Park:H3 Biomedicine: Employment. Pazolli:H3 Biomedicine: Employment. Thomas:H3 Biomedicine: Employment. Wang:H3 Biomedicine: Employment. Warmuth:H3 Biomedicine: Employment. Yu:H3 Biomedicine: Employment. Zhu:H3 Biomedicine: Employment. Furman:Acerta Pharma BV: Research Funding; Gilead: Consultancy; Pharmacyclics LLC, an AbbVie Company: Consultancy, Honoraria, Speakers Bureau. Ebert:Celgene: Consultancy; H3 Biomedicine: Consultancy; Genoptix: Consultancy, Patents & Royalties. Smith:H3 Biomedicine: Employment.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2015
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 74, No. 19_Supplement ( 2014-10-01), p. 2932-2932
    Kurzfassung: Recurrent heterozygous mutations of the spliceosome protein SF3B1 have been identified in myelodysplastic syndromes, chronic lymphocytic leukemia (CLL), breast, pancreatic and skin cancers. SF3B1 is a component of the U2 snRNP complex which binds to the pre-mRNA branch point site and is involved in recognition and stabilization of the spliceosome at the 3′ splice site. To understand the impact of SF3B1 mutations, we compared RNAseq profiles from tumor samples with SF3B1 hotspot mutations (SF3B1-MUT) or wild-type SF3B1 (SF3B1-WT) in breast cancer, melanoma and CLL. This analysis revealed significant increases in the usage of novel alternative splice junctions in SF3B1-MUT samples including selection of alternative 3′ splice sites and less frequently exon skipping. These events induce expression of alternative mRNAs that are translated into novel proteins or aberrant mRNAs that are decayed by cells. A common alternative splicing profile was shared across different hotspot mutations and lineages (e.g. ZDHHC16 and COASY); however, unique alternative splicing profiles were also observed suggesting lineage specific effects. RNAseq analysis of several cell lines with endogenous SF3B1 hotspot mutations confirmed the presence of the same spliced isoforms as observed in tumor samples. To prove that SF3B1-MUT were inducing alternative splicing, transient transfection of several SF3B1 hotspot mutations in 293FT cells induced the expression of the common alternatively spliced genes suggesting functional similarity. Selective shRNA depletion of mutant SF3B1 allele in SF3B1-MUT cells resulted in downregulation of the same splice isoforms. Furthermore, isogenic B-cell lines (NALM-6) expressing the most frequent SF3B1 mutation (K700E) were generated and profiled by RNAseq. As expected, similar alternatively spliced genes were observed in NALM-6 SF3B1-K700E cells exclusively. To investigate the role of nonsense-mediated mRNA decay (NMD) in eliminating aberrant mRNAs induced by SF3B1-MUT, we treated NALM-6 SF3B1-K700E cells with cycloheximide, a translation inhibitor known to inhibit NMD. In the treated samples, expression of several aberrant mRNAs was revealed and some of these transcripts were shown to be downregulated in patient samples. Taken together, these results confirm the association between different SF3B1 hotspot mutations and the presence of novel splice isoforms. We demonstrated that E7107, a potent and selective inhibitor of wild-type SF3B1, also binds and inhibits SF3B1-MUT protein. In addition, E7107 represses the expression of several common aberrant splice mRNA products in SF3B1-MUT cells in vitro and in vivo. When tested in a NALM-6 mouse model, E7107 induced tumor regression and increased the overall survival of animals implanted with NALM-6 SF3B1-K700E cells. These data suggest splicing inhibitors as a promising therapeutic approach for cancer patients carrying SF3B1 mutations. Citation Format: Silvia Buonamici, Kian Huat Lim, Jacob Feala, Eunice Park, Laura Corson, Michelle Aicher, Daniel Aird, Betty Chan, Erik Corcoran, Rachel Darman, Peter Fekkes, Gregg Keaney, Pavan Kumar, Kaiko Kunii, Linda Lee, Xiaoling Puyang, Jose Rodrigues, Anand Selvaraj, Michael Thomas, John Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Peter Smith, Yoshiharu Mizui. SF3B1 mutations induce aberrant mRNA splicing in cancer and confer sensitivity to spliceosome inhibition. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2932. doi:10.1158/1538-7445.AM2014-2932
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2014
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2015
    In:  Molecular Cancer Therapeutics Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. C8-C8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. C8-C8
    Kurzfassung: Myeloid cell leukemia 1 (MCL1) is a member of the BCL2 family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and new modalities for targeting MCL1 are required. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1L) isoform to the BH3-only MCL1 short (MCL1S) isoform, which has been reported to be pro-apoptotic. Thus, changing MCL1 isoform levels through modulation of RNA splicing may represent an attractive approach to targeting MCL1-amplified cancers. To this end, we tested a collection of small molecule SF3B modulators that impact RNA splicing on MCL1-dependent and MCL1-independent NSCLC cell lines. SF3B modulators induced rapid downregulation of the long form and upregulation of the short- and intron-containing form of MCL1 across models; however, apoptosis was only observed in MCL1-dependent cells. Importantly, SF3B modulators preferentially killed MCL1-dependent cell lines and sensitivity correlated with MCL1 amplification. To dissect the mechanism of SF3B modulator-induced cytotoxicity, we overexpressed either the cDNA for the BH3-only short isoform or the full length isoform of MCL1. Surprisingly, overexpression of MCL1S cDNA had no significant effect on cells by itself and did not sensitize cells to SF3B modulator cytotoxicity. Conversely, MCL1L-specific shRNA knockdown was sufficient to kill MCL1-dependent cells and SF3B modulator cytotoxicity was rescued by expression of MCL1L cDNA. Together, these results argue that MCL1L modulation and not MCL1S upregulation is the effector of SF3B modulator cytotoxicity. In immunocompromised mice bearing MCL1-dependent xenograft models, SF3B1 modulator treatment resulted in significant downregulation of MCL1 levels accompanied by induction of apoptosis and robust efficacy at well-tolerated doses. Moreover, MCL1L cDNA expression in MCL1-dependent models rescued apoptosis induced by SF3B1 modulator treatment. These studies provide proof-of-concept that splicing modulation is an effective strategy for targeting cancers dependent on MCL1. Citation Format: Daniel Aird, Ermira Pazolli, Craig Furman, Linda Lee, Kaiko Kunii, Eun Sun Park, Craig Karr, Betty Chan, Michelle Aicher, Silvia Buonamici, John Yuan Wang, Jacob Feala, Lihua Yu, Markus Warmuth, Peter Smith, Peter Fekkes, Ping Zhu, Baudouin Gerard, Yoshiharu Mizui, Laura Corson. Targeting MCL1-dependent cancers with SF3B splicing modulators. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C8.
    Materialart: Online-Ressource
    ISSN: 1535-7163 , 1538-8514
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 2062135-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2941-2941
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2941-2941
    Kurzfassung: Myeloid cell leukemia 1 (MCL1) is a member of the BCL2-family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and thus far has been unsuccessful. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1-L) isoform to the BH3-only containing MCL1 short (MCL1-S) isoform. As a potential approach for targeting MCL1-dependent cancers, we explored the use of MCL1 splicing modulators. We screened a unique chemical library of compounds that span a range of splicing activities on various substrates in an in vitro assay. Interestingly, we found a subset of general splicing modulators, as well as a subset of SF3B1 inhibitors, that are capable of driving the distinctive alterations in MCL1 splicing that in turn can trigger preferential killing of MCL1-dependent cell lines. The best modulators induce a prominent down-regulation of MCL1-L, up-regulation of MCL1-S, and accumulation of intron-retained MCL1 transcript. Somewhat surprisingly, several additional avenues of investigation pointed to MCL1-L down-regulation rather than MCL1-S up-regulation as the driver of preferential killing of MCL1-dependent cells. This includes the fact that compound-induced cytotoxicity can be rescued by expression of a MCL1-L cDNA and MCL1-L specific shRNA knockdown is sufficient to kill MCL1-dependent cells. On the other hand, overexpression of MCL1-S cDNA had no significant effect on cells and splicing modulators that induced very high levels of MCL1-S mRNA in the absence potent MCL1-L down-regulation exhibit minimal cytotoxicity. Biochemical characterization and understanding of these MCL1 splicing modulators has enabled further optimization of compounds that can induce potent and preferential killing of MCL1-dependent cancer cell lines in vitro. Preliminary studies in mice bearing MCL1-dependent NSCLC xenografts confirmed current lead compounds can indeed induce rapid down-regulation of MCL1-L, induction of apoptosis, and antitumor activity. Collectively these data yield insight into mechanisms of MCL1 splicing modulation that can trigger acute apoptosis in MCL1-dependent cancers and provides support for the idea of using splicing modulators to target difficult-to-drug oncogenic drivers such as MCL1. Citation Format: Eun Sun Park, Michelle Aicher, Daniel Aird, Silvia Buonamici, Betty Chan, Cheryl Eifert, Peter Fekkes, Craig Furman, Baudouin Gerard, Craig Karr, Gregg Keaney, Kaiko Kunii, Linda Lee, Ermira Pazolli, Sudeep Prajapati, Takashi Satoh, Peter Smith, John Yuan Wang, Karen Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Laura B. Corson. Targeting MCL1-dependent cancers through RNA splicing modulation. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2941. doi:10.1158/1538-7445.AM2015-2941
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 1185-1185
    Kurzfassung: Genomic characterization of hematologic and solid cancers has revealed recurrent somatic mutations affecting genes encoding the RNA splicing factors SF3B1, U2AF1, SRSF2 and ZRSR2. Recent data reveal that these mutations confer an alteration of function inducing aberrant splicing and rendering spliceosome mutant cells preferentially sensitive to splicing modulation compared with wildtype (WT) cells. Here we describe a novel orally bioavailable small molecule SF3B1 modulator identified through a medicinal chemistry effort aimed at optimizing compounds for preferential lethality in spliceosome mutant cells. H3B-8800 potently binds to WT or mutant SF3b complexes and modulates splicing in in vitro biochemical splicing assays and cellular pharmacodynamic assays. The selectivity of H3B-8800 was confirmed by observing lack of activity in cells expressing SF3B1R1074H, the SF3B1 mutation previously shown to confer resistance to other splicing modulators. Although H3B-8800 binds both WT and mutant SF3B1, it results in preferential lethality of cancer cells expressing SF3B1K700E, SRSF2P95H, or U2AF1S34F mutations compared to WT cells. In animals xenografted with SF3B1K700E knock-in leukemia K562 cells or mice transplanted with Srsf2P95H/MLL-AF9 mouse AML cells, oral H3B-8800 treatment demonstrated splicing modulation and inhibited tumor growth, while no therapeutic impact was seen in WT controls. These data were also evident in patient-derived xenografts (PDX) from patients with CMML where H3B-8800 resulted in a substantial reduction of leukemic burden only in SRSF2-mutant but not in WT CMML PDX models. Additionally, due to the high frequency of U2AF1 mutations in non-small cell lung cancer, H3B-8800 was tested in U2AF1S34F-mutant H441 lung cancer cells. Similar to the results from leukemia models, H3B-8800 demonstrated preferential lethality of U2AF1-mutant cells in vitro and in in vivo orthotopic xenografts at well tolerated doses. RNA-seq of isogenic K562 cells treated with H3B-8800 revealed dose-dependent inhibition of splicing. Although global inhibition of RNA splicing was not observed; H3B-8800 treatment led to preferential intron retention of transcripts with shorter and more GC-rich regions compared to those unaffected by drug. Interestingly, H3B-8800-retained introns commonly disrupted the expression of spliceosomal genes, suggesting that the preferential effect of H3B-8800 on spliceosome mutant cells is due to the dependency of these cells on expression of WT spliceosomal genes. These data identify a novel therapeutic approach with selective lethality in leukemias and lung cancers bearing a spliceosome mutation. Despite the essential nature of splicing, cancer cells without a spliceosome mutation were less sensitive to H3B-8800 compared with potent eradication of mutant counterparts. H3B-8800 is currently undergoing clinical evaluation in patients with MDS, AML, and CMML. Citation Format: Silvia Buonamici, Akihide Yoshimi, Michael Thomas, Michael Seiler, Betty Chan, Benjamin Caleb, Fred Csibi, Rachel Darman, Peter Fekkes, Craig Karr, Gregg Keaney, Amy Kim, Virginia Klimek, Pavan Kumar, Kaiko Kunii, Stanley Chun-Wei Lee, Xiang Liu, Crystal MacKenzie, Carol Meeske, Yoshiharu Mizui, Eric Padron, Eunice Park, Ermira Pazolli, Sudeep Prajapati, Nathalie Rioux, Justin Taylor, John Wang, Markus Warmuth, Huilan Yao, Lihua Yu, Ping Zhu, Omar Abdel-Wahab, Peter Smith. H3B-8800, a novel orally available SF3b modulator, shows preclinical efficacy across spliceosome mutant cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1185. doi:10.1158/1538-7445.AM2017-1185
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2017
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2015
    In:  Molecular Cancer Therapeutics Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B125-B125
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. B125-B125
    Kurzfassung: Refractory Anemia with Ringed Sideroblasts (RARS), a subtype of Myelodysplatic Syndrome (MDS), occurs with a high frequency of hotspot mutations in HEAT (Huntingtin, Elongation factor 3, protein phosphatase 2A, Targets of rapamycin 1 domains) domains of SF3B1. This protein component of the U2 snRNP complex of the spliceosome is essential in the proper selection and usage of 3' splice sites. RNAseq analysis of MDS and other tumor types in which SF3B1 hotspot mutations have been found show that alternative 3' splice site usage is the predominant cause of RNA transcript aberration. These modifications can result in mRNAs encoding novel peptides, or they can introduce premature termination codons into the pre-mRNA, most likely directing it to the Nonsense Mediated Decay (NMD) pathway for degradation. Using a predictive tool to determine the likelihood of a given aberrant transcript to be targeted for NMD, we determined that nearly 50% of the SF3B1-mutant-associated aberrant transcripts were candidates for degradation. We confirmed this experimentally by treating isogenic Nalm-6 cells (engineered by AAV homology to express SF3B1 K700E or K700K) with or without cycloheximide, an agent known to inhibit translation and RNA degradation by NMD. Investigation of the resulting RNAseq data showed significant rescue of gene expression only for the transcripts predicted to be NMD targets. Ingenuity Pathway Analysis indicated that many of the downregulated genes in SF3B1 mutant samples were involved in differentiation, which has been shown to be dysregulated in MDS. We tested the idea that such modifications in the transcriptome confer selective advantage or impair differentiation in SF3B1 mutant cells. We began by manipulating the expression of ABCB7, one of the genes identified in our RNAseq analysis to be downregulated by aberrant splicing and subsequent NMD. ABCB7 is a mitochondrial transporter important in cellular iron metabolism and, indirectly, in heme production. Additionally, loss of function of ABCB7 is causal in X-linked sideroblastic anemia and has been implicated in RARS MDS. We discovered in our SILAC proteomic analysis that ABCB7 protein was dramatically decreased in K700E SF3B1 Nalm-6 cells relative to K700K Nalm-6, in agreement with our RNAseq analysis. Using doxycycline-inducible shRNA expression, we knocked down ABCB7 mRNA and protein expression in TF-1 erythroblasts. These cells show significant decreases in erythropoeitin (EPO)-induced differentiation when expressing exogenous K700E SF3B1, but not K700R (a very conservative mutation) or WT SF3B1. With direct knock down of ABCB7, we observed a similar phenotype - impairment of EPO-induced differentiation in ABCB7 shRNA-induced cells by Day 7, with no overall decline in cell viability. Interestingly, knock down of SF3B1 expression with shRNA also reduces ABCB7 mRNA. However, it also promotes cell death. This is consistent with the heterozygous nature of SF3B1 hotspot mutations; severe loss of SF3B1 function is deleterious. We propose that hotspot SF3B1 mutants promote aberrant splicing of multiple genes, inducing a general “spliceosomal sickness” in addition to downregulating key genes (e.g. ABCB7) responsible for erythroid differentiation impairment, such as that observed in RARS. Citation Format: Rachel B. Darman, Samantha A. Perino, Michael Seiler, Shouyong Peng, Jacob Feala, Peter Fekkes, Gregg F. Keaney, Kaiko Kunii, Linda Lee, Kian Huat Lim, Yoshiya Oda, Khin Myint, Esther A. Obeng, Ermira Pazolli, Eun Sun Park, John Yuan Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Benjamin L. Ebert, Peter G. Smith, Silvia Buonamici. Mutant SF3B1 downregulates proteins involved in differentiation, including ABCB7. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr B125.
    Materialart: Online-Ressource
    ISSN: 1535-7163 , 1538-8514
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 2062135-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Cell Reports, Elsevier BV, Vol. 13, No. 5 ( 2015-11), p. 1033-1045
    Materialart: Online-Ressource
    ISSN: 2211-1247
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2015
    ZDB Id: 2649101-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4615-4615
    Kurzfassung: Recently, heterozygous mutations in several spliceosome genes have been observed in hematological and solid cancers, but their functional role in these diseases is not well understood. Among these, SF3B1 is the most commonly mutated spliceosome gene in myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia (CLL). SF3B1 is part of the U2 complex involved in the recognition of the 3’ splice sites (3’ss) during early spliceosome assembly. To determine the impact of SF3B1 mutations, we compared RNAseq profiles from tumor samples with SF3B1 hotspot mutations (SF3B1MUT) or wild-type SF3B1 (SF3B1WT) in breast cancer, melanoma, CLL and MDS. This analysis revealed significantly increased usage of aberrant 3’ss in SF3B1MUT samples. In addition, the aberrantly spliced exons carry a proximal splice acceptor (SA) 15 to 21 nucleotides upstream of the canonical SA with a weak and short polypyrimidine tract. Using ectopic expression and allele-specific RNAi, we confirmed that mutations in SF3B1 are sufficient and required for these aberrant splicing events which suggests a neomorphic splicing activity of SF3B1MUT. Furthermore, a common aberrant splicing profile was shared across different hotspot mutations and diseases; however, unique aberrant splicing profiles were also observed in each disease suggesting lineage and disease specific effects. In particular, gene-set enrichment analysis of aberrantly spliced and differentially expressed genes in mutant vs. wild type samples identified genes that regulate cell differentiation and epigenetics in MDS, pathways/processes known to be dysregulated in myeloid malignancies. To study the impact of SF3B1MUT on differentiation processes, we used the well-established TF-1 model of erythroid differentiation. SF3B1K700E (the most common mutation in MDS and CLL), SF3B1G742D (a mutation found in CLL but not MDS patients), SF3B1K700R (a mutation unable to induce aberrant splicing) and SF3B1WT were overexpressed in TF-1 to study erythoid differentiation post erythropoietin (EPO) exposure. EPO treatment, as expected, induced differentiation in TF-1 cells transduced with SF3B1WT and SF3B1K700R. Consistent with a possible mechanism in MDS, SF3B1K700E transduction blocked differentiation of TF-1 cells. Intriguingly, SF3B1G742D, which is found mutated in CLL but not MDS, did not block differentiation in this myeloid differentiation model, implying that specific SF3B1 mutations and splicing aberrations have important context dependent effects. Ongoing studies comparing splicing aberrations induced by SF3B1K700E and SF3B1G742D in TF-1 cell differentiation will be described. Finally, we evaluated a potent and selective modulator of SF3B1 that inhibits both canonical and neomorphic splicing activities in vitro and in vivo. The SF3B1 modulator induced tumor regression in SF3B1MUT xenografts and increased the overall survival of animals bearing SF3B1MUT xenografts at well tolerated doses. Taken together, our data suggest that SF3B1 mutations impair cell differentiation and that splicing modulators hold promise for the treatment of cancers with SF3B1 mutations, including CLL and MDS. Disclosures Buonamici: H3 Biomedicine: Employment. Perino:H3 Biomedicine: Employment. Lim:H3 Biomedicine: Employment. Feala:H3 Biomedicine: Employment. Aicher:H3 Biomedicine: Employment. Aird:H3 Biomedicine: Employment. Bailey:H3 Biomedicine: Employment. Berkenblit:H3 Biomedicine: Employment. Chan:H3 Biomedicine: Employment. Erik:H3 Biomedicine: Employment. Corson:H3 Biomedicine: Employment. Darman:H3 Biomedicine: Employment. Fekkes:H3 Biomedicine: Employment. Furman:Pharmacyclics: Consultancy, Speakers Bureau. Keaney:H3 Biomedicine: Employment. Kumar:Eisai: Employment. Kunii:H3 Biomedicine: Employment. Lee:H3 Biomedicine: Employment. Mackenzie:Eisai: Employment. Park:H3 Biomedicine: Employment. Puyang:H3 Biomedicine: Employment. Selvaraj:H3 Biomedicine: Employment. Thomas:H3 Biomedicine: Employment. Wang:H3 Biomedicine: Employment. Warmuth:H3 Biomedicine: Employment. Yu:H3 Biomedicine: Employment. Zhu:H3 Biomedicine: Employment. Mizui:H3 Biomedicine: Employment. Smith:H3 Biomedicine: Employment.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2014
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...