GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2019-01-11)
    Kurzfassung: Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1 , BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL ( BCL2L1 -encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.
    Materialart: Online-Ressource
    ISSN: 2041-1723
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 2553671-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Science Immunology, American Association for the Advancement of Science (AAAS), Vol. 6, No. 66 ( 2021-12-24)
    Kurzfassung: Despite the enormous promise of T cell therapies, the isolation and study of human T cell receptors (TCRs) of dedicated specificity remains a major challenge. To overcome this limitation, we generated mice with a genetically humanized system of T cell immunity. We used VelociGene technology to replace the murine TCRαβ variable regions, along with regions encoding the extracellular domains of co-receptors CD4 and CD8, and major histocompatibility complex (MHC) class I and II, with corresponding human sequences. The resulting “VelociT” mice have normal myeloid and lymphoid immune cell populations, including thymic and peripheral αβ T cell subsets comparable with wild-type mice. VelociT mice expressed a diverse TCR repertoire, mounted functional T cell responses to lymphocytic choriomeningitis virus infection, and could develop experimental autoimmune encephalomyelitis. Immunization of VelociT mice with human tumor-associated peptide antigens generated robust, antigen-specific responses and led to identification of a TCR against tumor antigen New York esophageal squamous cell carcinoma-1 with potent antitumor activity. These studies demonstrate that VelociT mice mount clinically relevant T cell responses to both MHC-I– and MHC-II–restricted antigens, providing a powerful new model for analyzing T cell function in human disease. Moreover, VelociT mice are a new platform for de novo discovery of therapeutic human TCRs.
    Materialart: Online-Ressource
    ISSN: 2470-9468
    Sprache: Englisch
    Verlag: American Association for the Advancement of Science (AAAS)
    Publikationsdatum: 2021
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2015
    In:  Molecular Cancer Therapeutics Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. C8-C8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 14, No. 12_Supplement_2 ( 2015-12-01), p. C8-C8
    Kurzfassung: Myeloid cell leukemia 1 (MCL1) is a member of the BCL2 family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and new modalities for targeting MCL1 are required. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1L) isoform to the BH3-only MCL1 short (MCL1S) isoform, which has been reported to be pro-apoptotic. Thus, changing MCL1 isoform levels through modulation of RNA splicing may represent an attractive approach to targeting MCL1-amplified cancers. To this end, we tested a collection of small molecule SF3B modulators that impact RNA splicing on MCL1-dependent and MCL1-independent NSCLC cell lines. SF3B modulators induced rapid downregulation of the long form and upregulation of the short- and intron-containing form of MCL1 across models; however, apoptosis was only observed in MCL1-dependent cells. Importantly, SF3B modulators preferentially killed MCL1-dependent cell lines and sensitivity correlated with MCL1 amplification. To dissect the mechanism of SF3B modulator-induced cytotoxicity, we overexpressed either the cDNA for the BH3-only short isoform or the full length isoform of MCL1. Surprisingly, overexpression of MCL1S cDNA had no significant effect on cells by itself and did not sensitize cells to SF3B modulator cytotoxicity. Conversely, MCL1L-specific shRNA knockdown was sufficient to kill MCL1-dependent cells and SF3B modulator cytotoxicity was rescued by expression of MCL1L cDNA. Together, these results argue that MCL1L modulation and not MCL1S upregulation is the effector of SF3B modulator cytotoxicity. In immunocompromised mice bearing MCL1-dependent xenograft models, SF3B1 modulator treatment resulted in significant downregulation of MCL1 levels accompanied by induction of apoptosis and robust efficacy at well-tolerated doses. Moreover, MCL1L cDNA expression in MCL1-dependent models rescued apoptosis induced by SF3B1 modulator treatment. These studies provide proof-of-concept that splicing modulation is an effective strategy for targeting cancers dependent on MCL1. Citation Format: Daniel Aird, Ermira Pazolli, Craig Furman, Linda Lee, Kaiko Kunii, Eun Sun Park, Craig Karr, Betty Chan, Michelle Aicher, Silvia Buonamici, John Yuan Wang, Jacob Feala, Lihua Yu, Markus Warmuth, Peter Smith, Peter Fekkes, Ping Zhu, Baudouin Gerard, Yoshiharu Mizui, Laura Corson. Targeting MCL1-dependent cancers with SF3B splicing modulators. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2015 Nov 5-9; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2015;14(12 Suppl 2):Abstract nr C8.
    Materialart: Online-Ressource
    ISSN: 1535-7163 , 1538-8514
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 2062135-8
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2015
    In:  Cancer Research Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2941-2941
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2941-2941
    Kurzfassung: Myeloid cell leukemia 1 (MCL1) is a member of the BCL2-family of proteins governing the apoptosis pathway and is one of the most frequently amplified genes in cancer. MCL1 overexpression often results in dependence on MCL1 for survival and is linked to resistance to anticancer therapies. However, the development of direct MCL1 inhibitors has proven challenging and thus far has been unsuccessful. Alternative splicing of MCL1 converts the anti-apoptotic MCL1 long (MCL1-L) isoform to the BH3-only containing MCL1 short (MCL1-S) isoform. As a potential approach for targeting MCL1-dependent cancers, we explored the use of MCL1 splicing modulators. We screened a unique chemical library of compounds that span a range of splicing activities on various substrates in an in vitro assay. Interestingly, we found a subset of general splicing modulators, as well as a subset of SF3B1 inhibitors, that are capable of driving the distinctive alterations in MCL1 splicing that in turn can trigger preferential killing of MCL1-dependent cell lines. The best modulators induce a prominent down-regulation of MCL1-L, up-regulation of MCL1-S, and accumulation of intron-retained MCL1 transcript. Somewhat surprisingly, several additional avenues of investigation pointed to MCL1-L down-regulation rather than MCL1-S up-regulation as the driver of preferential killing of MCL1-dependent cells. This includes the fact that compound-induced cytotoxicity can be rescued by expression of a MCL1-L cDNA and MCL1-L specific shRNA knockdown is sufficient to kill MCL1-dependent cells. On the other hand, overexpression of MCL1-S cDNA had no significant effect on cells and splicing modulators that induced very high levels of MCL1-S mRNA in the absence potent MCL1-L down-regulation exhibit minimal cytotoxicity. Biochemical characterization and understanding of these MCL1 splicing modulators has enabled further optimization of compounds that can induce potent and preferential killing of MCL1-dependent cancer cell lines in vitro. Preliminary studies in mice bearing MCL1-dependent NSCLC xenografts confirmed current lead compounds can indeed induce rapid down-regulation of MCL1-L, induction of apoptosis, and antitumor activity. Collectively these data yield insight into mechanisms of MCL1 splicing modulation that can trigger acute apoptosis in MCL1-dependent cancers and provides support for the idea of using splicing modulators to target difficult-to-drug oncogenic drivers such as MCL1. Citation Format: Eun Sun Park, Michelle Aicher, Daniel Aird, Silvia Buonamici, Betty Chan, Cheryl Eifert, Peter Fekkes, Craig Furman, Baudouin Gerard, Craig Karr, Gregg Keaney, Kaiko Kunii, Linda Lee, Ermira Pazolli, Sudeep Prajapati, Takashi Satoh, Peter Smith, John Yuan Wang, Karen Wang, Markus Warmuth, Lihua Yu, Ping Zhu, Yoshiharu Mizui, Laura B. Corson. Targeting MCL1-dependent cancers through RNA splicing modulation. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2941. doi:10.1158/1538-7445.AM2015-2941
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2015
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. DDT01-04-DDT01-04
    Kurzfassung: Mutations in the estrogen receptor (ER) are detected in up to 30% of patients that initially respond but subsequently relaps to anti-endocrine therapies. ERα mutations, likely through constitutively activating ERα, can functionally confer resistance to existing classes of endocrine therapies. Current endocrine therapies are only partially effective in the ERα mutant setting and a significant proportion of endocrine-therapy resistant breast cancer metastases continue to remain dependent on ERα signaling for growth/survival indicating a critical need to develop the next generation of ERα antagonists that can overcome ERα wild-type and mutant activity. Here we describe a novel series of compounds with a unique mode of inhibition that potently target both wild-type and mutant ERα. These compounds are Selective Estrogen Receptor Covalent Antagonists (SERCAs) that inactivate the estrogen receptor by targeting a cysteine that is not present in other nuclear hormone receptors, leading to a unique biological and activity profile differentiated from Selective Estrogen Receptor Modulators (SERMs) and Selective Estrogen Receptor Degraders (SERDs). Using structure-based drug design approaches we have identified a first-in-class clinical candidate, H3B-6545. H3B-6545 is a highly selective small molecule that potently antagonizes wild-type and mutant ERα in biochemical and cell based assays. In vitro comparisons with standard of care and other experimental agents confirm increased cell potency of H3B-6545 under continuous as well as washout treatment conditions. In vivo, once daily oral dosing of H3B-6545 shows potent activity and superior efficacy to fulvestrant in the MCF-7 xenograft model with maximal antitumor activity at doses & gt;10x below the maximum tolerated dose in mice. In addition, H3B-6545 shows superior antitumor activity to tamoxifen and fulvestrant in patient derived xenograft models of estrogen receptor positive breast cancer including models carrying ERα mutations In non-clinical safety studies in rat and monkeys, H3B-6545 is well tolerated across a broad dose range and at exposures that significantly exceed those required for efficacy in mouse xenograft models. In summary, H3B-6545 is a first-in-class, orally available and potent selective estrogen receptor covalent antagonist with a compelling preclinical efficacy and safety profile that is being developed for the treatment of breast cancer. Citation Format: Peter G. Smith, Xiaoling Puyang, Craig Furman, Guo Zhu Zheng, Deepti Banka, Michael Thomas, Vanitha Subramanian, Sean Irwin, Nicholas Larsen, Benjamin Caleb, Craig Karr, Jeremy Wu, Morgan O’Shea, Joyce Yang, Allison Davis, Amy Kim, Nathalie Rioux, Victoria Rimkunas, Huilan Yao, Crystal MacKenzie, Pavan Kumar, Sherri Smith, Sean Eckley, Andrew Hart, George Lai, Christopher Rowbottom, Peter Fekkes, Silvia Buonamici, Dominic Reynolds, Lihua Yu, Tarek Sahmoud, Markus Warmuth, Lorna Mitchell, Ping Zhu, Manav Korpal. Discovery and development of H3B-6545: A novel, oral, selective estrogen receptor covalent antagonist (SERCA) for the treatment of breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr DDT01-04. doi:10.1158/1538-7445.AM2017-DDT01-04
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2017
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 281-281
    Kurzfassung: Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment. Citation Format: Daniel Aird, Teng Teng, Chia-Ling Huang, Ermira Pazolli, Deepti Banka, Kahlin Cheung-Ong, Cheryl Eifert, Craig Furman, Jeremy Wu, Michael Seiler, Silvia Buonamici, Peter Fekkes, Craig Karr, James Palacino, Eunice Park, Peter Smith, Lihua Yu, Yoshiharu Mizui, Markus Warmuth, Agustin Chicas, Laura Corson, Ping Zhu. Sensitivity to splicing modulation of BCL2 family genes reveals cancer therapeutic strategies for splicing modulators [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 281.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2019
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 298, No. 11 ( 2022-11), p. 102539-
    Materialart: Online-Ressource
    ISSN: 0021-9258
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2022
    ZDB Id: 2141744-1
    ZDB Id: 1474604-9
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 8, No. 9 ( 2018-09-01), p. 1176-1193
    Kurzfassung: Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs. Significance: Nearly 30% of endocrine therapy–resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176–93. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1047
    Materialart: Online-Ressource
    ISSN: 2159-8274 , 2159-8290
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2018
    ZDB Id: 2607892-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Injury, Elsevier BV, Vol. 52, No. 10 ( 2021-10), p. 3051-3059
    Materialart: Online-Ressource
    ISSN: 0020-1383
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2021
    ZDB Id: 2011808-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2007
    In:  Journal of Endodontics Vol. 33, No. 6 ( 2007-6), p. 749-752
    In: Journal of Endodontics, Elsevier BV, Vol. 33, No. 6 ( 2007-6), p. 749-752
    Materialart: Online-Ressource
    ISSN: 0099-2399
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2007
    ZDB Id: 2083582-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...