GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-22
    Description: Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: The fast flowing ice stream of the Pine Island Glacier (PIG) in West Antarctica feeds the Pine Island Ice Shelf (PIIS). Its flow acceleration, thinning and mass loss has been associated with changes in sub-ice shelf ocean circulation. Several recent field and remote sensing programs focused on the Pine Island Embayment and PIG to study the local circulation, water mass properties, as well as bathymetry and cavity geometry. Observations of water mass properties entering and leaving the ice-cavity of the PIIS, as well as observations within the cavity are used to estimate a horizontal map of basal melt rates for the PIIS. For this purpose a regional ocean general circulation model that includes ice-ocean interactions is fitted to observations using optimal estimation methods. Hence, the estimates combine on both observations and the dynamical information about the circulation underneath the ice-shelf as resolved by the numerical model. The control variables, that are adjusted during the estimation process, are initial conditions, open boundary conditions, vertical mixing parameters, and melt rates. Data coverage, but also the choice of bathymetry and melt-rate parameterization, affect the state estimate and the net melt rate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barker, L. D. L., Jakuba, M., V., Bowen, A. D., German, C. R., Maksym, T., Mayer, L., Boetius, A., Dutrieux, P., & Whitcomb, L. L. Scientific challenges and present capabilities in underwater robotic vehicle design and navigation for oceanographic exploration under-ice. Remote Sensing, 12(16), (2020): 2588, doi:10.3390/rs12162588.
    Description: This paper reviews the scientific motivation and challenges, development, and use of underwater robotic vehicles designed for use in ice-covered waters, with special attention paid to the navigation systems employed for under-ice deployments. Scientific needs for routine access under fixed and moving ice by underwater robotic vehicles are reviewed in the contexts of geology and geophysics, biology, sea ice and climate, ice shelves, and seafloor mapping. The challenges of under-ice vehicle design and navigation are summarized. The paper reviews all known under-ice robotic vehicles and their associated navigation systems, categorizing them by vehicle type (tethered, untethered, hybrid, and glider) and by the type of ice they were designed for (fixed glacial or sea ice and moving sea ice).
    Description: Barker and Whitcomb gratefully acknowledge the support of the National Science Foundation under Award 1319667 and 1909182, and support of the first author under a Graduate Fellowship from the Johns Hopkins Department of Mechanical Engineering. Jakuba, Bowen, and German gratefully acknowledge the support of the National Aeronautics and Space Administration under Planetary Science and Technology through Analog Research (PSTAR) award NNX16AL04G. Maksym was supported by National Science Foundation Award CMMI-1839063. Dutrieux was supported by his Center for Climate and Life Fellowship from the Earth Institute of Columbia University. Boetius acknowledges funding from the Helmholtz Association for the FRAM infrastructure, and from her ERC Adv. Grant ABYSS (294757). Mayer’s work is supported by NOAA Grant NA15NOS4000200.
    Keywords: Underwater robotic vehicles ; Under-ice navigation ; Tethered vehicles ; Hybrid vehicles ; Gliders ; Ocean science ; Ocean exploration
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Timmermann, Ralph; Le Brocq, Anne M; Deen, Tara J; Domack, Eugene W; Dutrieux, Pierre; Galton-Fenzi, Ben; Hellmer, Hartmut H; Humbert, Angelika; Jansen, Daniela; Jenkins, Adrian; Lambrecht, Astrid; Makinson, Keith; Niederjasper, Fred; Nitsche, Frank-Oliver; Nøst, Ole Anders; Smedsrud, Lars Henrik; Smith, Walter (2010): A consistent dataset of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth System Science Data, 2(2), 261-273, https://doi.org/10.5194/essd-2-261-2010
    Publication Date: 2023-03-16
    Description: Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for upper and lower ice surface topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The global 1-minute dataset (RTopo-1 Version 1.0.5) has been split into two NetCDF files. The first contains digital maps for global bedrock topography, ice bottom topography, and surface elevation. The second contains the auxiliary maps for data sources and the surface type mask. A regional subset that covers all variables for the region south of 50 deg S is also available in NetCDF format. Datasets for the locations of grounding and coast lines are provided in ASCII format.
    Keywords: AWI_OceDyn; Comment; File format; File size; ice2sea; Ocean Dynamics @ AWI; RTopo; RTopo-1; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-30
    Keywords: 15N2-tracer method; Calculated after Luo et al. (2012); Chlorophyll a as carbon; Comment; Date/Time of event; DEPTH, water; Equatorial Pacific; Event label; GOFLO; Go-Flo bottles; KiloMoana20060309; KiloMoana20060609/1; KiloMoana20060609/2; KiloMoana20060809; KiloMoana20060821; KiloMoana20060826; KiloMoana20060829; KiloMoana20060914; KiloMoana20060919; KiloMoana20060922; KiloMoana20060923; KiloMoana20060925; KiloMoana20060927; KiloMoana20060928; KiloMoana20060930; KiloMoana20061009; Latitude of event; Longitude of event; MAREDAT_Diazotrophs_Collection; Nitrate; Nitrogen fixation rate, total; Nitrogen fixation rate, whole seawater; Phosphate; Salinity; Temperature, water; Unicellular cyanobacteria, nitrogen fixation rate
    Type: Dataset
    Format: text/tab-separated-values, 326 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...