GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 93 (2012): 1547–1566, doi:10.1175/BAMS-D-11-00201.1.
    Description: The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95°–100°W, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.
    Description: Funding for GEO-CAPE definition activities is provided by the Earth Science Division of the National Aeronautics and Space Administration.
    Description: 2013-04-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Report of the Ocean Observation Research Coordination Network In-situ-Satellite Observation Working Group
    Description: This report is intended to illustrate and provide recommendations for how ocean observing systems of the next decade could focus on coastal environments using combined satellite and in situ measurements. Until recently, space-based observations have had surface footprints typically spanning hundreds of meters to kilometers. These provide excellent synoptic views for a wide variety of ocean characteristics. In situ observations are instead generally point or linear measurements. The interrelation between space-based and in-situ observations can be challenging. Both are necessary and as sensors and platforms evolve during the next decade, the trend to facilitate interfacing space and in-situ observations must continue and be expanded. In this report, we use coastal observation and analyses to illustrate an observing system concept that combines in situ and satellite observing technologies with numerical models to quantify subseasonal time scale transport of freshwater and its constituents from terrestrial water storage bodies across and along continental shelves, as well as the impacts on some key biological/biogeochemical properties of coastal waters.
    Description: Ocean Research Coordination Network and the National Science Foundation
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 13 (1983), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. Methods for determination of low levels of biogenic silica (0.2–0.4 mg SiO2) in aqueous samples after digestion with three wetalkaline extraction procedures compared favourably in both precision of replicates and recovery of silica utilized by diatoms in budgeted cultures. Leaching samples with 0.2 M NaOH for 10–15 min at 100°C was the least time consuming procedure. Also interference from silicate minerals was lower for this method than leaching with either 0.5 or 5% Na2CO3 for 2 h at 85°C. The use of filters to concentrate samples enables detection of low levels of biogenic silica with colorimetric procedures. Polycarbonate filters are recommended in preference to cellulose acetate or polyvinyl chloride filters for sample collection. Time-course experiments are recommended for establishing digestion times and determining the presence of mineral silicate interference. Wet-alkaline digestion methods are recommended for routine analysis of biogenic silica in suspended matter in preference to infra-red analysis, alkaline fusion and hydrofluoric acid/nitric acid methods.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...