GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-12-15
    Description: Variability of the North Atlantic Oscillation (NAO) drives wintertime temperature anomalies in the Northern Hemisphere. Dynamical seasonal prediction systems can skilfully predict the winter NAO. However, prediction of the NAO‐dependent air temperature anomalies remains elusive, partially due to the low variability of predicted NAO. Here, we demonstrate a hidden potential of a multi‐model ensemble of operational seasonal prediction systems for predicting wintertime temperature by increasing the variability of predicted NAO. We identify and subsample those ensemble members which are close to NAO index statistically estimated from initial autumn conditions. In our novel multi‐model approach, the correlation prediction skill for wintertime Central Europe temperature is improved from 0.25 to 0.66, accompanied by an increased winter NAO prediction skill of 0.9. Thereby, temperature anomalies can be skilfully predicted for the upcoming winter over a large part of the Northern Hemisphere through increased variability and skill of predicted NAO.
    Description: Plain Language Summary: Wintertime temperature in the Northern Hemisphere is regulated by the variations of atmospheric pressure, represented by the so‐called North Atlantic Oscillation (NAO). The NAO's phase—negative or positive—is associated with the pathways of cold and warm air masses leading to cold or warm winters in Europe. While the NAO phase can be predicted well, predictions of the NAO‐dependent air temperature remain elusive. Specifically, it is challenging to predict the strength of the NAO, the most important requirement for the accurate prediction of wintertime temperature. Here, we improve wintertime temperature prediction by increasing the strength of the predicted NAO. We use observation based autumn Northern Hemisphere ocean and air temperature, as well as ice and snow cover for statistical estimation of the first guess NAO for the upcoming winter. Then, we sub‐select only those simulations from the multi‐model ensemble, which are consistent with our first guess NAO. As a result, based on these selected members, the wintertime temperature prediction is substantially improved over a large part of the Northern Hemisphere.
    Description: Key Points: Amplitude and skill of predicted North Atlantic Oscillation (NAO) improve significantly by subsampling of ensemble of existing seasonal prediction systems. Amplified NAO variability leads to significant improvement in predicting the upcoming winter temperature anomalies in the Northern Hemisphere.
    Description: Deutsche Forschungsgemeinschaft
    Description: Climate, Climatic Change, and Society
    Description: Marine Institute grant
    Description: European Union's Horizon 2020 research and innovation programme
    Description: https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=overview
    Description: http://www.ecmwf.int/en/forecasts/datasets
    Keywords: ddc:551.6 ; seasonal prediction ; wintertime temperature anomalies
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-05
    Description: Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, decadal regional ocean climate and fish stock predictions have until now had low forecast skill. Here, we provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas a decade in advance. We develop a unified dynamical-statistical prediction system wherein statistical models link future stock biomass to dynamical predictions of sea surface temperature, while also considering different fishing mortalities. Our retrospective forecasts provide estimates of past performance of our models and they suggest differences in the source of prediction skill between the two cod stocks. We forecast the continuation of unfavorable oceanic conditions for the North Sea cod in the coming decade, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.
    Description: North Sea cod stock may not recover in the decade 2020-2030 while Northeast Arctic cod biomass is also predicted to decline but will be better able to recover, according to an integration of statistical fisheries models and climate predictions
    Description: https://www.thuenen.de/en/sf/projects/a-physical-statistical-model-of-hydrography-for-fishery-and-ecology-studies-ahoi/
    Description: https://www.metoffice.gov.uk/hadobs/hadisst/index.html
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_1075_ds00004
    Keywords: ddc:577.7 ; Marine biology ; Ocean sciences ; Physical oceanography ; Projection and prediction ; North Sea ; Barents Sea ; cod stocks
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Marine heatwaves are known to have a detrimental impact on marine ecosystems, yet predicting when and where they will occur remains a challenge. Here, using a large ensemble of initialized predictions from an Earth System Model, we demonstrate skill in predictions of summer marine heatwaves over large marine ecosystems in the Arabian Sea seven months ahead. Retrospective forecasts of summer (June to August) marine heatwaves initialized in the preceding winter (November) outperform predictions based on observed frequencies. These predictions benefit from initialization during winters of medium to strong El Niño conditions, which have an impact on marine heatwave characteristics in the Arabian Sea. Our probabilistic predictions target spatial characteristics of marine heatwaves that are specifically useful for fisheries management, as we demonstrate using an example of Indian oil sardine (〈italic〉Sardinella longiceps〈/italic〉).〈/p〉
    Description: Plain Language Summary: Marine heatwaves (MHWs) are prolonged extreme events associated with exceptionally high ocean water temperatures. Such events impose heat stress on marine life, and thus predicting such events is beneficial for management applications. In this work we show that the occurrence of MHWs in summer in the Arabian Sea can be skilfully predicted seven month in advance. Our prediction system benefits from the information of sea surface temperature anomalies in the eastern Pacific Ocean in the preceding winter, among other aspects. Our predictions suggest potential for using climate information in fisheries management in this region.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Summer marine heatwaves in the Arabian Sea are predictable seven months in advance〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The prediction skill in summer is mainly associated with a preceding El Niño event in winter〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Probabilistic predictions of Arabian Sea area under heatwave can be tailored to benefit fisheries〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: Universität Hamburg http://dx.doi.org/10.13039/501100005711
    Description: Cedars‐Sinai Medical Center http://dx.doi.org/10.13039/100013015
    Description: Marine Institute http://dx.doi.org/10.13039/501100001627
    Description: Copernicus Climate Change Service
    Description: Aigéin, Aeráid, agus athrú Atlantaigh
    Description: EU
    Description: http://dx.doi.org/10.7289/V5SQ8XB5
    Description: http://hdl.handle.net/hdl:21.14106/f2fdc61b13828ed5284f4e4ab41e63f8a84c6e52
    Description: http://hdl.handle.net/hdl:21.14106/27e73ed39cd59d2033e018a494e342383db53a0b
    Keywords: ddc:551.46 ; Arabian Sea ; marine heatwaves
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-09
    Description: Sea-level and ice-sheet databases have driven numerous advances in understanding the Earth system. We describe the challenges and offer best strategies that can be adopted to build self-consistent and standardised databases of geological and geochemical information used to archive palaeo-sea-levels and palaeo-ice-sheets. There are three phases in the development of a database: (i) measurement, (ii) interpretation, and (iii) database creation. Measurement should include the objective description of the position and age of a sample, description of associated geological features, and quantification of uncertainties. Interpretation of the sample may have a subjective component, but it should always include uncertainties and alternative or contrasting interpretations, with any exclusion of existing interpretations requiring a full justification. During the creation of a database, an approach based on accessibility, transparency, trust, availability, continuity, completeness, and communication of content (ATTAC3) must be adopted. It is essential to consider the community that creates and benefits from a database. We conclude that funding agencies should not only consider the creation of original data in specific research-question-oriented projects, but also include the possibility of using part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-21
    Description: Seasonal prediction systems based on Earth System Models exhibit a lower proportion of predictable signal to unpredictable noise than the actual world. This puzzling phenomena has been widely referred to as the signal‐to‐noise paradox (SNP). Here, we investigate the SNP in a conceptual framework of a seasonal prediction system based on the Lorenz, 1963 Model (L63). We show that the SNP is not apparent in L63, if the uncertainty assumed for the initialization of the ensemble is equal to the uncertainty in the starting conditions. However, if the uncertainty in the initialization overestimates the uncertainty in the starting conditions, the SNP is apparent. In these experiments the metric used to quantify the SNP also shows a clear lead‐time dependency on subseasonal timescales. We therefore, formulate the alternative hypothesis to previous studies that the SNP could also be related to the magnitude of the initial ensemble spread.
    Description: Plain Language Summary: Comprehensive Earth System Models seem to be better at predicting the real observed climate system than expected based on their ability to predict their own modelled climate system. This puzzling phenomena is known as the signal‐to‐noise paradox (SNP) and its origin is still under intensive scientific debate with some studies pointing to deficiencies in the model formulation. In this study we investigate under which conditions the SNP can be obtained using a simple conceptual framework for a climate prediction system based on a simple dynamical model. Our results show that the SNP can be reproduced in the absence of model deficiencies if the model overestimates the observational uncertainty. We also investigate the development of the SNP on subseasonal timescales and find a clear dependency on the lead‐time of the prediction. Our results lead us to formulate an alternative hypothesis to previous studies on the origin of the SNP.
    Description: Key Points: Whether forecasts in the Lorenz Model are reliable or not depends on the ratio of initial ensemble spread to observational uncertainty Until predictability is lost in the Lorenz Model the level of over‐or underconfidence increases with increasing lead‐time
    Description: Copernicus Climate Change Service
    Description: Marine Institute and the European Regional Development fund
    Description: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
    Keywords: 551.5 ; Lorenz Model
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...