GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Bonn : Universität Bonn, Institut für Geowissenschaften, Abteilung Meteorologie
    Keywords: Forschungsbericht ; Kumulus ; Muster
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (21 Seiten, 1,35 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LK1507A-E , Verbundnummer 01169691 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-20
    Description: Marine Heatwaves (MHW) are SST extremes that can have devastating impacts on marine ecosystems and can influence circulation patterns in the ocean and the atmosphere. Here, we present a first attempt to study the decadal predictability of MHW in an ensemble of decadal hindcasts based on the Max Planck Institute Earth System Model. For the global mean we find significant skill for the multiyear MHW trends but we cannot predict the interannual to decadal variability of MHW. In the Subpolar North Atlantic, we can predict the interannual to decadal variability of MHW days and frequency up to lead year 8. We demonstrate that in the Subpolar North Atlantic, any increase in SST is accompanied by more MHW and vice versa. Thereby we gain additional information about the decadal evolution of SST that go beyond predicting the yearly mean SST.
    Description: Plain Language Summary: Marine Heatwaves (MHW) are periods with extremely warm ocean temperatures that can be disruptive for many marine ecosystems. Here, we provide an attempt to predict the evolution of MHW in the global ocean for the following two to ten years. With this analysis we improve our understanding of the predictability of surface temperatures in the global ocean. We find that there are strong regional differences in the predictability of MHW. One region where MHW can be predicted successfully is the Subpolar North Atlantic. We show that an increase in mean ocean temperature also results in an increase in MHW.
    Description: Key Points: Global mean multiyear trends for Marine Heatwaves (MHW) days and frequency can be skillfully predicted for the following two to eight years. In the Subpolar North Atlantic, yearly characteristics MHW days and frequency are predictable up to leadyear eight. Any increase in SST in the Subpolar North Atlantic is accompanied by an increase in MHW and vice versa.
    Description: Copernicus Climate Change Service
    Description: Deutsche Forschungsgemeinschaft
    Description: http://hdl.handle.net/hdl:21.14106/f2fdc61b13828ed5284f4e4ab41e63f8a84c6e52
    Keywords: ddc:551.46 ; Marine Heatwaves ; decadal predictions ; North Atlantic ; extreme events
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-05
    Description: Reliable information about the future state of the ocean and fish stocks is necessary for informed decision-making by fisheries scientists, managers and the industry. However, decadal regional ocean climate and fish stock predictions have until now had low forecast skill. Here, we provide skilful forecasts of the biomass of cod stocks in the North and Barents Seas a decade in advance. We develop a unified dynamical-statistical prediction system wherein statistical models link future stock biomass to dynamical predictions of sea surface temperature, while also considering different fishing mortalities. Our retrospective forecasts provide estimates of past performance of our models and they suggest differences in the source of prediction skill between the two cod stocks. We forecast the continuation of unfavorable oceanic conditions for the North Sea cod in the coming decade, which would inhibit its recovery at present fishing levels, and a decrease in Northeast Arctic cod stock compared to the recent high levels.
    Description: North Sea cod stock may not recover in the decade 2020-2030 while Northeast Arctic cod biomass is also predicted to decline but will be better able to recover, according to an integration of statistical fisheries models and climate predictions
    Description: https://www.thuenen.de/en/sf/projects/a-physical-statistical-model-of-hydrography-for-fishery-and-ecology-studies-ahoi/
    Description: https://www.metoffice.gov.uk/hadobs/hadisst/index.html
    Description: http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=DKRZ_LTA_1075_ds00004
    Keywords: ddc:577.7 ; Marine biology ; Ocean sciences ; Physical oceanography ; Projection and prediction ; North Sea ; Barents Sea ; cod stocks
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-30
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Marine heatwaves are known to have a detrimental impact on marine ecosystems, yet predicting when and where they will occur remains a challenge. Here, using a large ensemble of initialized predictions from an Earth System Model, we demonstrate skill in predictions of summer marine heatwaves over large marine ecosystems in the Arabian Sea seven months ahead. Retrospective forecasts of summer (June to August) marine heatwaves initialized in the preceding winter (November) outperform predictions based on observed frequencies. These predictions benefit from initialization during winters of medium to strong El Niño conditions, which have an impact on marine heatwave characteristics in the Arabian Sea. Our probabilistic predictions target spatial characteristics of marine heatwaves that are specifically useful for fisheries management, as we demonstrate using an example of Indian oil sardine (〈italic〉Sardinella longiceps〈/italic〉).〈/p〉
    Description: Plain Language Summary: Marine heatwaves (MHWs) are prolonged extreme events associated with exceptionally high ocean water temperatures. Such events impose heat stress on marine life, and thus predicting such events is beneficial for management applications. In this work we show that the occurrence of MHWs in summer in the Arabian Sea can be skilfully predicted seven month in advance. Our prediction system benefits from the information of sea surface temperature anomalies in the eastern Pacific Ocean in the preceding winter, among other aspects. Our predictions suggest potential for using climate information in fisheries management in this region.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Summer marine heatwaves in the Arabian Sea are predictable seven months in advance〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The prediction skill in summer is mainly associated with a preceding El Niño event in winter〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Probabilistic predictions of Arabian Sea area under heatwave can be tailored to benefit fisheries〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: Universität Hamburg http://dx.doi.org/10.13039/501100005711
    Description: Cedars‐Sinai Medical Center http://dx.doi.org/10.13039/100013015
    Description: Marine Institute http://dx.doi.org/10.13039/501100001627
    Description: Copernicus Climate Change Service
    Description: Aigéin, Aeráid, agus athrú Atlantaigh
    Description: EU
    Description: http://dx.doi.org/10.7289/V5SQ8XB5
    Description: http://hdl.handle.net/hdl:21.14106/f2fdc61b13828ed5284f4e4ab41e63f8a84c6e52
    Description: http://hdl.handle.net/hdl:21.14106/27e73ed39cd59d2033e018a494e342383db53a0b
    Keywords: ddc:551.46 ; Arabian Sea ; marine heatwaves
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Five initialization and ensemble generation methods are investigated with respect to their impact on the prediction skill of the German decadal prediction system "Mittelfristige Klimaprognose" (MiKlip). Among the tested methods, three tackle aspects of model‐consistent initialization using the ensemble Kalman filter (EnKF), the filtered anomaly initialization (FAI) and the initialization method by partially coupled spin‐up (MODINI). The remaining two methods alter the ensemble generation: the ensemble dispersion filter (EDF) corrects each ensemble member with the ensemble mean during model integration. And the bred vectors (BV) perturb the climate state using the fastest growing modes. The new methods are compared against the latest MiKlip system in the low‐resolution configuration (Preop‐LR), which uses lagging the climate state by a few days for ensemble generation and nudging toward ocean and atmosphere reanalyses for initialization. Results show that the tested methods provide an added value for the prediction skill as compared to Preop‐LR in that they improve prediction skill over the eastern and central Pacific and different regions in the North Atlantic Ocean. In this respect, the EnKF and FAI show the most distinct improvements over Preop‐LR for surface temperatures and upper ocean heat content, followed by the BV, the EDF and MODINI. However, no single method exists that is superior to the others with respect to all metrics considered. In particular, all methods affect the Atlantic Meridional Overturning Circulation in different ways, both with respect to the basin‐wide long‐term mean and variability, and with respect to the temporal evolution at the 26° N latitude.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-23
    Description: High-resolution simulations (grid spacing 2.5 km) are performed with ICON-LEM to characterize convective organization in the Tropics during August 2016 over a large domain ranging from northeastern South America, along the tropical Atlantic to Africa (8,000×3,000 km). The degree of organization is measured by a refined version of the wavelet-based organization index (WOI), which is able to characterize the scale, the intensity and anisotropy of convection based on rain rates alone. Exploiting the localization of wavelets both in space and time, we define a localized version of the convective organization index (LWOI). We compare convection observed in satellite-derived rain rates with the corresponding processes simulated by ICON-LEM. Model and observations indicate three regions with different kinds of convective organization. Continental convection over West Africa has a predominantly meridional orientation and is more organized than over South America, because it acts on larger scales and is more intense. Convection over the tropical Atlantic is zonally oriented along the ITCZ and less intense. ICON and observations agree on the number and intensity of the African easterly waves during the simulation period. The waves are associated with strong vorticity anomalies and are clearly visible in a spatiotemporal wavelet analysis. The central speed and the wavelength of the waves is simulated well. Both the scale and intensity components of LWOI in ICON are significantly correlated with environmental variables. The scale of precipitation is related to wind shear, CAPE and its tendency, while the intensity strongly correlates with column-integrated humidity, upper-level divergence and maximum vertical wind speed. This demonstrates that the LWOI components capture important characteristics of convective precipitation.
    Keywords: 551.5 ; convective organization ; ICON-LEM ; IMERG ; LWOI ; tropical convection ; wavelet-based organization index ; WOI
    Language: English
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3International workshop on seasonal to decadal prediction, Toulouse, France, May 13-16, 2013
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: We present results from the assimilation of observed oceanic 3-D temperature and salinity fields into the global coupled Max Planck Institute Earth system model with the SEIK filter from January 1996 to December 2010. Our study is part of an effort to perform and evaluate assimilation and prediction within the same coupled climate model without the use of re-analysis data. We use two assimilation setups, one where oceanic observations over the entire water column are assimilated, and one where only oceanic observations below 50 m depth are assimilated. We compare the results from both assimilations with an unconstrained control experiment. While we do not find significant improvements due to assimilation in terms of the root-mean-square error of simulated temperature, 0–700 m heat content, sea surface height (SSH), and the Atlantic meridional overturning circulation (AMOC) against observations, we find the variability in terms of correlation with observations significantly improved due to assimilation, most prominently in the tropical oceans. Improvements over the control experiment are stronger in the sub-50 m assimilation experiment and in integrated quantities (SSH, AMOC).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...