GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Publikationsart
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    Frontiers Media
    In:  EPIC3Frontiers in Climate, Frontiers Media, 3, pp. 58, ISSN: 2624-9553
    Publikationsdatum: 2021-07-01
    Beschreibung: An important aspect of inevitable surprises, for the climate system, is the potential of occurrence of compound extreme events. These can be events that occur at the same time over the same geographic location or at multiple locations within a given country or around the world. In this study, we investigate the spatio-temporal variability of summer compound hot and dry (CHD) events at European level and we quantify the relationship between the occurrence of CHDs and the large-scale atmospheric circulation. Here we show that summer 1955 stands out as the year with the largest spatial extent characterized by hot and dry conditions (~21.2 at European level), followed by 2015 (~20.3), 1959 (~19.4), and 1950 (~16.9). By employing an Empirical Orthogonal Function (EOF) analysis we show that there are three preferred centers of action of CHDs over Europe: Fennoscandia, the central part of Europe, and the south-eastern part of Europe. Overall, hot and dry summers are, in general, associated with persistent high-pressure systems over the regions affected by CHDs, which in turn reduces the zonal flow and diverts the storm tracks southward. The high-pressure systems associated with each mode of variability largely suppresses ascending motions, reduces water vapor condensation and precipitation formation, leading to drought conditions below this atmospheric system. This study may help improve our understanding of the spatio-temporal variability of hot and dry summers, at European level, as well as their driving mechanisms.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 17(3), pp. 1005-1023, ISSN: 1814-9324
    Publikationsdatum: 2021-07-01
    Beschreibung: We investigate the climate signature of δ18O tree-ring records from sites distributed all over Europe covering the last 400 years. An empirical orthogonal function (EOF) analysis reveals two distinct modes of variability on the basis of the existing δ18O tree-ring records. The first mode is associated with anomaly patterns projecting onto the El Niño–Southern Oscillation (ENSO) and reflects a multi-seasonal climatic signal. The ENSO link is pronounced for the last 130 years, but it is found to be weak over the period from 1600 to 1850, suggesting that the relationship between ENSO and the European climate may not be stable over time. The second mode of δ18O variability, which captures a north–south dipole in the European δ18O tree-ring records, is related to a regional summer atmospheric circulation pattern, revealing a pronounced centre over the North Sea. Locally, the δ18O anomalies associated with this mode show the same (opposite) sign with temperature (precipitation). Based on the oxygen isotopic signature derived from tree rings, we argue that the prevailing large-scale atmospheric circulation patterns and the related teleconnections can be analysed beyond instrumental records.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-02-14
    Beschreibung: Bivalve sclerochronological records with annually resolved growth bands are applicable proxies in reconstructing features of the hydro-climate system. Here we evaluate the relationship between growth indices of A. islandica, previously collected at approximately 82 m depth in the North Atlantic, and seasonal subsurface temperature at various depths for the 1900–2005 period. Correlations with sea surface temperature at the collection site are not significant during winter and weak for the remaining seasons. The strongest in-phase correlations persist for summer and autumn below 56 m water depth, whereas weaker correlations are lagged by one or two years. We also observe similarities with distant water bodies in the North Atlantic sector, and a corresponding large-scale oceanographic pattern that increases significantly with water depth along the trajectory of the North Atlantic Current. We suggest that by investigating the relationship with the temperature signal at various depths locally and at large-scale increases the reliability and application of bivalve shells as marine archives.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...