GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: cyanobacteria ; intermediary metabolism ; Calvin cycle ; trophic adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The involvement of a gene ofSynechocystis PCC6803,icfG, in the co-ordinated regulation of inorganic carbon and glucose metabolism, was established. TheicfG gene codes for a 72 kDa protein, which shows no homology with those registered in data libraries. Expression oficfG required glucose, the actual inducer probably being glucose-6-phosphate, and was independent of light and of the external inorganic carbon concentration. Mutants carrying an inactivated copy oficfG were constructed. Their growth characteristics were identical to those of the wild type under all regimes except in limiting inorganic carbon with glucose being present either before or after the transfer to the limiting conditions. These conditions completely prevented growth, both in the light and in the dark. The inhibition could be relieved by several intermediates of the tricarboxylic acid cycle. Assays of various enzymic activities related to inorganic carbon uptake and to its assimilationvia either the Calvin cycle or phosphoenolpyruvate carboxylase did not reveal the level of action of IcfG. Possible models include a blockage of the assimilation of both carbon sources in the absence of IcfG, or the inhibition of Ci incorporation route(s) essential under limiting inorganic carbon conditions, even when glucose is present, and even in the dark.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: green algae ; high-CO2 stress ; photosynthesis ; regulation ; Rubisco activase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA and the corresponding genomic DNA region encoding Rubisco activase were isolated from the unicellular green alga Chlorococcum littorale. The deduced amino acid sequence encoded by the cDNA was 403 amino acids long and exhibited important homology with those of other known Rubisco activases. Its N-terminal sequence was similar to the chloroplastic transit peptides in Chlamydomonas reinhardtii. The mature protein had a predicted molecular mass of 42 kDa. Five introns were located inside the genomic gene encoding Rubisco activase (rca). Genomic Southern blots indicated that two copies of the rca gene were present in the genome of C. littorale. The level of rca messenger RNA increased when cells of C. littorale were subjected to high-CO2 stress (i.e. grown under at least 20% CO2). Hsp70 heat-shock protein was also induced under high-CO2 conditions and, as expected, was also induced at 35 °C. The rca gene, in contrast, was not induced at 35 °C, indicating that this gene was induced in response to the high CO2 concentration and not to general stress. A search of the promoter-binding proteins by a gel retardation assay showed that, under the high-CO2 conditions, a protein(s) which was probably an activator of the rca transcription was synthesized.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: cyanobacteria ; inorganic carbon ; carbonic anhydrase ; acetazolamide ; resistant mutant ; nucleotide sequence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A gene, zam (for resistance to acetazolamide), controlling resistance to the carbonic anhydrase inhibitor acetazolamide, is described. It has been cloned from a spontaneous mutant, AZAr-5b, isolated from the cyanobacterium Synechocystis PCC 6803, for its resistance to this drug (Bédu et al., Plant Physiol 93: 1312–1315, 1990). This mutant, besides its resistance to acetazolamide, displayed an absence of catalysed oxygen exchange activity on whole cells, suggestive of a deficiency in carbonic anhydrase activity. The gene was isolated by screening a genomic library of AZAr-5b, and selecting for the capacity to transfer the AZAr phenotype to wild-type cells. A system leading to forced homologous recombination in the host chromosome, using a platform vector, was devised in order to bypass direct selection difficulties. The putative encoded protein, 782 amino acids long, showed some homology with four eukaryotic and prokaryotic proteins involved in different cellular processes, one of them suppressing a phosphatase deficiency. The mutated allele of AZAr-5b showed an in-frame 12 nucleotide duplication, which should not interfere with translation, and might result from transposition of a mobile element. Integration into a wild-type genome of either the spontaneous mutated allele or one inactivated by insertional mutagenesis conferred the character of resistance, but not the deficiency in oxygen exchange, indicating that the two phenotypic aspects of AZAr-5b corresponded to two independent mutations. A working hypothesis explaining the phenotypes of the mutants is that the presence of the Zam protein would be necessary for the inhibitor to reach (one of) the two carbonic anhydrases present in this strain. This, however, would be a secondary action, the physiological role of the protein still being cryptic.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...