GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • acetazolamide  (1)
  • 1
    ISSN: 1573-5028
    Schlagwort(e): cyanobacteria ; inorganic carbon ; carbonic anhydrase ; acetazolamide ; resistant mutant ; nucleotide sequence
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract A gene, zam (for resistance to acetazolamide), controlling resistance to the carbonic anhydrase inhibitor acetazolamide, is described. It has been cloned from a spontaneous mutant, AZAr-5b, isolated from the cyanobacterium Synechocystis PCC 6803, for its resistance to this drug (Bédu et al., Plant Physiol 93: 1312–1315, 1990). This mutant, besides its resistance to acetazolamide, displayed an absence of catalysed oxygen exchange activity on whole cells, suggestive of a deficiency in carbonic anhydrase activity. The gene was isolated by screening a genomic library of AZAr-5b, and selecting for the capacity to transfer the AZAr phenotype to wild-type cells. A system leading to forced homologous recombination in the host chromosome, using a platform vector, was devised in order to bypass direct selection difficulties. The putative encoded protein, 782 amino acids long, showed some homology with four eukaryotic and prokaryotic proteins involved in different cellular processes, one of them suppressing a phosphatase deficiency. The mutated allele of AZAr-5b showed an in-frame 12 nucleotide duplication, which should not interfere with translation, and might result from transposition of a mobile element. Integration into a wild-type genome of either the spontaneous mutated allele or one inactivated by insertional mutagenesis conferred the character of resistance, but not the deficiency in oxygen exchange, indicating that the two phenotypic aspects of AZAr-5b corresponded to two independent mutations. A working hypothesis explaining the phenotypes of the mutants is that the presence of the Zam protein would be necessary for the inhibitor to reach (one of) the two carbonic anhydrases present in this strain. This, however, would be a secondary action, the physiological role of the protein still being cryptic.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...