GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 2564, doi: 10.1121/1.5034174.
    Description: The Australian snubfin dolphin (Orcaella heinsohni) is endemic to Australian waters, yet little is known about its abundance and habitat use. To investigate the feasibility of Passive Acoustic Monitoring for snubfin dolphins, biosonar clicks were recorded in Cygnet Bay, Australia, using a four-element hydrophone array. Clicks had a mean source level of 200 ± 5 dB re 1 μPa pp, transmission directivity index of 24 dB, mean centroid frequency of 98 ± 9 kHz, and a root-mean-square bandwidth of 31 ± 3 kHz. Such properties lend themselves to passive acoustic monitoring, but are comparable to similarly-sized delphinids, thus requiring additional cues to discriminate between snubfins and sympatric species.
    Description: We thank the Fitzroy Basin Association for funding fieldwork in Gladstone May 2013 as well as the Australian Marine Mammal Centre who funded J.N.S. with the Bill Dawbin Fellowship and provided fieldwork funding. P.T.M. was funded by a Sir Walter Murdoch Honorary Professorship from Murdoch University and frame grants from FNU. F.H.J. was supported by the office of naval research (N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies, Aarhus University, under EU's FP7 programme (Agreement No. 609033).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 582-592, doi:10.1121/1.3662067.
    Description: Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7±6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.
    Description: This study received support from the Danish Ph.D. School of Aquatic Sciences (SOAS), Aarhus University, DK, WWF Verdensnaturfonden and Aase & Ejnar Danielsens Foundation, the Siemens Foundation, the Faculty of Science at the University of Aarhus, DK, and the Danish Natural Science Foundation via a Steno scholarship and a logistics grant to PTM.
    Keywords: Acoustic arrays ; Acoustic noise ; Acoustic radiators ; Acoustic variables measurement ; Acoustic wave transmission ; Biocommunications ; Global Positioning System ; Hydrophones ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Company of Biologists, 2015. This is the author's version of the work. It is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology (2015), doi:10.1242/​jeb.116285.
    Description: Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spatial relationship between an echolocating predator and its prey changes rapidly, resulting in different biosonar requirements throughout prey pursuit and capture. Here we measured single click beam patterns using a parametric fit procedure to test whether free-ranging Atlantic spotted dolphins (Stenella frontalis) modify their biosonar beamwidth. We recorded echolocation clicks using a linear array of receivers and estimated the beamwidth of individual clicks using a parametric spectral fit, cross-validated with well-established composite beam pattern estimates. The dolphins apparently increased the biosonar beamwidth, to a large degree without changing the signal frequency, when they approached the recording array. This is comparable to bats that also expand their field of view during prey capture, but achieve this by decreasing biosonar frequency. This behaviour may serve to decrease the risk that rapid escape movements of prey take them outside the biosonar beam of the predator. It is likely that shared sensory requirements have resulted in bats and toothed whales expanding their acoustic field of view at close range to increase the likelihood of successfully acquiring prey using echolocation, representing a case of convergent evolution of echolocation behaviour between these two taxa.
    Description: The study was funded by frame grants from the Danish Natural Science Foundation to PTM and MW, and by the National Oceanographic Partnership Programme via a research agreement between La Laguna University (NAS) and the Woods Hole Oceanographic Institution (MJ). FHJ was supported by the Danish Council for Independent Research | Natural Sciences, and is currently funded by a postdoctoral fellowship from the Carlsberg Foundation.
    Description: 2016-03-12
    Keywords: Echolocation ; Directionality ; Field of view ; Perception ; Dolphin ; Prey capture
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...