GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-16
    Description: As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15–8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-11
    Description: As the atmospheric CO2 concentration rises, more CO2 will dissolve in the oceans, leading to a reduction in pH. Effects of ocean acidification on bacterial communities have mainly been studied in biologically complex systems, in which indirect effects, mediated through food web interactions, come into play. These approaches come close to nature but suffer from low replication and neglect seasonality. To comprehensively investigate direct pH effects, we conducted highly-replicated laboratory acidification experiments with the natural bacterial community from Helgoland Roads (North Sea). Seasonal variability was accounted for by repeating the experiment four times (spring, summer, autumn, winter). Three dilution approaches were used to select for different ecological strategies, i.e. fast-growing or low-nutrient adapted bacteria. The pH levels investigated were in situ seawater pH (8.15–8.22), pH 7.82 and pH 7.67, representing the present-day situation and two acidification scenarios projected for the North Sea for the year 2100. In all seasons, both automated ribosomal intergenic spacer analysis and 16S ribosomal amplicon pyrosequencing revealed pH-dependent community shifts for two of the dilution approaches. Bacteria susceptible to changes in pH were different members of Gammaproteobacteria, Flavobacteriaceae, Rhodobacteraceae, Campylobacteraceae and further less abundant groups. Their specific response to reduced pH was often context-dependent. Bacterial abundance was not influenced by pH. Our findings suggest that already moderate changes in pH have the potential to cause compositional shifts, depending on the community assembly and environmental factors. By identifying pH-susceptible groups, this study provides insights for more directed, in-depth community analyses in large-scale and long-term experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: ABSTRACT: BACKGROUND: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. RESULTS: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. CONCLUSIONS: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area 〉5500 km2, which contained ~2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ~440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ~30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-07
    Description: Highlights: • Mid-Atlantic vent mussel populations are contemporarily isolated • Population connectivity can only be maintained in a stepwise manner • Four mussel lineages exist on the Mid-Atlantic Ridge • Recolonization of perturbed vent localities is uncertain Summary: Deep-sea hydrothermal vents are patchily distributed ecosystems inhabited by specialized animal populations that are textbook meta-populations. Many vent-associated species have free-swimming, dispersive larvae that can establish connections between remote populations. However, connectivity patterns among hydrothermal vents are still poorly understood because the deep sea is undersampled, the molecular tools used to date are of limited resolution, and larval dispersal is difficult to measure directly. A better knowledge of connectivity is urgently needed to develop sound environmental management plans for deep-sea mining. Here, we investigated larval dispersal and contemporary connectivity of ecologically important vent mussels (Bathymodiolus spp.) from the Mid-Atlantic Ridge by using high-resolution ocean modeling and population genetic methods. Even when assuming a long pelagic larval duration, our physical model of larval drift suggested that arrival at localities more than 150 km from the source site is unlikely and that dispersal between populations requires intermediate habitats (“phantom” stepping stones). Dispersal patterns showed strong spatiotemporal variability, making predictions of population connectivity challenging. The assumption that mussel populations are only connected via additional stepping stones was supported by contemporary migration rates based on neutral genetic markers. Analyses of population structure confirmed the presence of two southern and two hybridizing northern mussel lineages that exhibited a substantial, though incomplete, genetic differentiation. Our study provides insights into how vent animals can disperse between widely separated vent habitats and shows that recolonization of perturbed vent sites will be subject to chance events, unless connectivity is explicitly considered in the selection of conservation areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-22
    Description: Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...