GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Keywords: Forschungsbericht ; Amundsenmeer ; Schelfeis ; Wechselwirkung ; Geoengineering
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (41 Seiten, 9,51 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 01LS1612A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The large variety of atmospheric circulation systems affecting the eastern Asian climate is reflected by the complex Asian vegetation distribution. Particularly in the transition zones of these circulation systems, vegetation is supposed to be very sensitive to climate change. Since proxy records are scarce, hitherto a mechanistic understanding of the past spatio-temporal climate–vegetation relationship is lacking. To assess the Holocene vegetation change and to obtain an ensemble of potential mid-Holocene biome distributions for eastern Asia, we forced the diagnostic biome model BIOME4 with climate anomalies of different transient Holocene climate simulations performed in coupled atmosphere–ocean(–vegetation) models. The simulated biome changes are compared with pollen-based biome records for different key regions. In all simulations, substantial biome shifts during the last 6000 years are confined to the high northern latitudes and the monsoon–westerly wind transition zone, but the temporal evolution and amplitude of change strongly depend on the climate forcing. Large parts of the southern tundra are replaced by taiga during the mid-Holocene due to a warmer growing season and the boreal treeline in northern Asia is shifted northward by approx. 4° in the ensemble mean, ranging from 1.5 to 6° in the individual simulations, respectively. This simulated treeline shift is in agreement with pollen-based reconstructions from northern Siberia. The desert fraction in the transition zone is reduced by 21 % during the mid-Holocene compared to pre-industrial due to enhanced precipitation. The desert–steppe margin is shifted westward by 5° (1–9° in the individual simulations). The forest biomes are expanded north-westward by 2°, ranging from 0 to 4° in the single simulations. These results corroborate pollen-based reconstructions indicating an extended forest area in north-central China during the mid-Holocene. According to the model, the forest-to-non-forest and steppe-to-desert changes in the climate transition zones are spatially not uniform and not linear since the mid-Holocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-05
    Description: Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-04
    Description: Various observational estimates indicate growing mass loss at Antarctica's margins but also heavier precipitation across the continent. In the future, heavier precipitation fallen on Antarctica will counteract any stronger iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we use from nine CMIP5 models future projections, ranging from strong mitigation efforts to business-as-usual, to run an ensemble of ice-sheet simulations. We test, how the precipitation boundary condition determines Antarctica's sea-level contribution. The spatial and temporal varying climate forcings drive ice-sheet simulations. Hence, our ensemble inherits all spatial and temporal climate patterns, which is in contrast to a spatial mean forcing. Regardless of the applied boundary condition and forcing, some areas will lose ice in the future, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea. In general the simulated ice-sheet thickness grows in a broad marginal strip, where incoming storms deliver topographically controlled precipitation. This strip shows the largest ice thickness differences between the applied precipitation boundary conditions too. On average Antarctica's ice mass shrinks for all future scenarios if the precipitation is scaled by the spatial temperature anomalies coming from the CMIP5 models. In this approach, we use the relative precipitation increment per degree warming as invariant scaling constant. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies of the CMIP5 models directly. Here, the scaling factors show a distinct spatial pattern across Antarctica. Furthermore, the diagnosed mean scaling across all considered climate forcings is larger than the values deduced from ice cores. In general, the scaling is higher across the East Antarctic Ice Sheet, lower across the West Antarctic Ice Sheet, and lowest around the Siple Coast. The latter is located on the east side of the Ross Ice Shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-08-01
    Description: During the Last Interglacial (LIG, ∼130–115kiloyears (kyr) before present (BP)), the northern high latitudes were characterized by higher temperatures than those of the late Holocene and a lower Greenland Ice Sheet (GIS). However, the impact of a reduced GIS on the global climate has not yet been well constrained. In this study, we quantify the contribution of the GIS to LIG warmth by performing various sensitivity studies based on equilibrium simulations, employing the Community Earth System Models (COSMOS), with a focus on height and extent of the GIS. We present the first study on the effects of a reduction in the GIS on the surface temperature (TS) on a global scale and separate the contribution of astronomical forcing and changes in GIS to LIG warmth. The strong Northern Hemisphere summer warming of approximately 2°C (with respect to pre-industrial) is mainly caused by increased summer insolation. Reducing the height by  ∼ 1300m and the extent of the GIS does not have a strong influence during summer, leading to an additional global warming of only +0.24°C compared to the purely insolation-driven LIG. The effect of a reduction in the GIS is, however, strongest during local winter, with up to +5°C regional warming and with an increase in global average temperature of +0.48°C. In order to evaluate the performance of our LIG simulations, we additionally compare the simulated TS anomalies with marine and terrestrial proxy-based LIG temperature anomalies derived from three different proxy data compilations. Our model results are in good agreement with proxy records with respect to the warming pattern but underestimate the magnitude of temperature change when compared to reconstructions, suggesting a potential misinterpretation of the proxy records or deficits in our model. However, we are able to partly reduce the mismatch between model and data by additionally taking into account the potential seasonal bias of the proxy record and/or the uncertainties in the dating of the proxy records for the LIG thermal maximum. The seasonal bias and the uncertainty of the timing are estimated from new transient model simulations covering the whole LIG. The model–data comparison improves for proxies that represent annual mean temperatures when the GIS is reduced and when we take the local thermal maximum during the LIG (130–120kyrBP) into account. For proxy data that represent summer temperatures, changes in the GIS are of minor importance for sea surface temperatures. However, the annual mean and summer temperature change over Greenland in the reduced GIS simulations seems to be overestimated as compared to the local ice core data, which could be related to the interpretation of the recorder system and/or the assumptions of GIS reduction. Thus, the question regarding the real size of the GIS during the LIG has yet to be answered.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Guagnin, Maria; Jennings, Richard; Eager, Heidi; Parton, Ash; Stimpson, Christopher; Stepanek, Christian; Pfeiffer, Madlene; Groucutt, Huw S; Drake, Nick A; Alsharekh, Abdullah; Petraglia, Michael D (2016): Rock art imagery as a proxy for Holocene environmental change: A view from Shuwaymis, NW Saudi Arabia. The Holocene, 26(11), 1822-1834, https://doi.org/10.1177/0959683616645949
    Publication Date: 2023-12-09
    Description: In this data set we publish the simulated global annual mean precipitation over a time period of 50 years retrieved from equilibrium climate simulations for Pre-Industrial (PI) and 8 ka BP (HOL6) and utilized in the publication by Guagnin et al. (2016). The climate data has been produced with COSMOS (ECHAM5/JSBACH/MPIOM/OASIS3), utilized at a resolution of T31 in the atmosphere (19 hybrid sigma-pressure levels) and a resolution of GR30 (bipolar orthogonal curvilinear grid, formal resolution of ~3.0°x1.8°) in the ocean (40 z-coordinate levels). The only differences between the model setups of simulations PI and HOL6 are the settings of the Earth's orbital parameters and the atmosphere's constituents of trace gases, that have been set to the values representative for the respective time slice (see Table 1 of Guagnin et al. (2016) for details).
    Type: Dataset
    Format: application/zip, 1.6 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lohmann, Gerrit; Pfeiffer, Madlene; Laepple, Thomas; Leduc, Guillaume; Kim, Jung-Hyun (2013): A model-data comparison of the Holocene global sea surface temperature evolution. Climate of the Past, 9(4), 1807-1839, https://doi.org/10.5194/cp-9-1807-2013
    Publication Date: 2024-05-31
    Description: We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. This site provides informations about the Holocene temperature trends as simulated by the models. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate Modelling Intercomparison Project. The general pattern of sea surface temperature (SST) in the models shows a high latitude cooling and a low latitude warming. The proxy dataset comprises a global compilation of marine alkenone- and Mg/Ca-derived SST estimates. Independently of the choice of the climate model, we observe significant mismatches between modelled and estimated SST amplitudes in the trends for the last 6000 years. Alkenone-based SST records show a similar pattern as the simulated annual mean SSTs, but the simulated SST trends underestimate the alkenone-based SST trends by a factor of two to five. For Mg/Ca, no significant relationship between model simulations and proxy reconstructions can be detected. We tested if such discrepancies can be caused by too simplistic interpretations of the proxy data. We tested different seasons and depths in the model to compare the proxy data trends, and can reconcile only part of the mismatches on a regional scale. We therefore considered the additional environmental factor changes in the planktonic organisms' habitat depth and a time-shift in the recording season to diagnose whether invoking those environmental factors can help reconciling the proxy records and the model simulations. We find that invoking shifts in the living season and habitat depth can remove some of the model-data discrepancies in SST trends. Regardless whether such adjustments in the environmental parameters during the Holocene are realistic, they indicate that when modeled temperature trends are set up to allow drastic shifts in the ecological behavior of planktonic organisms, they do not capture the full range of reconstructed SST trends. Our findings indicate that climate model and reconstructed temperature trends are to a large degree only qualitatively comparable, thus providing a challenge for the interpretation of proxy data as well as the models' sensitivity to orbital forcing.
    Keywords: Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dallmeyer, Anne; Claussen, Martin; Fischer, Nils; Haberkorn, Kerstin; Wagner, Sebastian; Pfeiffer, Madlene; Jin, Liya; Khon, Vyacheslav; Wang, Yujie; Herzschuh, Ulrike (2015): The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene– comparison of different transient climate model simulations. Climate of the Past, 11(2), 305-326, https://doi.org/10.5194/cp-11-305-2015
    Publication Date: 2024-05-31
    Description: The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.
    Keywords: Comment; File content; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Reference of data; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 76 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Varma, Vidya; Prange, Matthias; Merkel, Ute; Kleinen, Thomas; Lohmann, Gerrit; Pfeiffer, Madlene; Renssen, Hans; Wagner, Axel; Wagner, Sebastian; Schulz, Michael (2012): Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 8(2), 391-402, https://doi.org/10.5194/cp-8-391-2012
    Publication Date: 2024-05-31
    Description: The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Felis, Thomas; Giry, Cyril; Scholz, Denis; Lohmann, Gerrit; Pfeiffer, Madlene; Pätzold, Jürgen; Kölling, Martin; Scheffers, Sander R (2015): Tropical Atlantic temperature seasonality at the end of the last interglacial. Nature Communications, 6, 6159, https://doi.org/10.1038/ncomms7159
    Publication Date: 2024-05-31
    Description: The end of the last interglacial period, ~118 kyr ago, was characterized by substantial ocean circulation and climate perturbations resulting from instabilities of polar ice sheets. These perturbations are crucial for a better understanding of future climate change. The seasonal temperature changes of the tropical ocean, however, which play an important role in seasonal climate extremes such as hurricanes, floods and droughts at the present day, are not well known for this period that led into the last glacial. Here we present a monthly resolved snapshot of reconstructed sea surface temperature in the tropical North Atlantic Ocean for 117.7±0.8 kyr ago, using coral Sr/Ca and d18O records. We find that temperature seasonality was similar to today, which is consistent with the orbital insolation forcing. Our coral and climate model results suggest that temperature seasonality of the tropical surface ocean is controlled mainly by orbital insolation changes during interglacials.
    Keywords: BON-5-D; Calculated, see reference(s); CaribClim_Coral_2006; Center for Marine Environmental Sciences; Diploria strigosa, Strontium/Calcium ratio; Diploria strigosa, δ18O; DRILL; Drilling/drill rig; ICP-OES, Perkin-Elmer, Optima 3300R; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; Internal coral chronology; MARUM; Mass spectrometer Finnigan MAT 251; Southern Caribbean Sea, Bonaire
    Type: Dataset
    Format: text/tab-separated-values, 720 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...