GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4392–4415, doi:10.1002/2016JC011634.
    Description: A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
    Description: NSF Grant Numbers: OCE-1203393, PLR-1203643; National Natural Science Foundation of China Grant Number: 41276197; Shanghai Pujiang Program Grant Number: 12PJ1404100; Shanghai Shuguang Program
    Description: 2016-12-25
    Keywords: Water transport ; Canadian Arctic Archipelago ; Atmospheric forcing ; Sea surface height
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 118 (2013): 1624, doi:10.1002/jgrc.20114.
    Description: 2013-09-30
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 5439-5449, doi:10.5194/bg-10-5439-2013.
    Description: The 11 March 2011 tsunami triggered by the M9 and M7.9 earthquakes off the Tōhoku coast destroyed facilities at the Fukushima Dai-ichi Nuclear Power Plant (FNPP) leading to a significant long-term flow of the radionuclide 137Cs into coastal waters. A high-resolution, global-coastal nested ocean model was first constructed to simulate the 11 March tsunami and coastal inundation. Based on the model's success in reproducing the observed tsunami and coastal inundation, model experiments were then conducted with differing grid resolution to assess the initial spread of 137Cs over the eastern shelf of Japan. The 137Cs was tracked as a conservative tracer (without radioactive decay) in the three-dimensional model flow field over the period of 26 March–31 August 2011. The results clearly show that for the same 137Cs discharge, the model-predicted spreading of 137Cs was sensitive not only to model resolution but also the FNPP seawall structure. A coarse-resolution (∼2 km) model simulation led to an overestimation of lateral diffusion and thus faster dispersion of 137Cs from the coast to the deep ocean, while advective processes played a more significant role when the model resolution at and around the FNPP was refined to ∼5 m. By resolving the pathways from the leaking source to the southern and northern discharge canals, the high-resolution model better predicted the 137Cs spreading in the inner shelf where in situ measurements were made at 30 km off the coast. The overestimation of 137Cs concentration near the coast is thought to be due to the omission of sedimentation and biogeochemical processes as well as uncertainties in the amount of 137Cs leaking from the source in the model. As a result, a biogeochemical module should be included in the model for more realistic simulations of the fate and spreading of 137Cs in the ocean.
    Description: This project was supported by the US National Science Foundation RAPID grants No. 1141697 and No. 1141785 and the Japan Science and Technology Agency J-RAPID program. The development of Global-FVCOM was supported by NSF grants ARC0712903, ARC0732084, and ARC0804029. Z. Lai’s contribution was supported by the Natural Science Foundation of China project 41206005, China MOST project 2012CB956004, and Sun Yat-Sen University 985 grant 42000-3281301. C. Chen serves as chief scientist for the International Center for Marine Studies, Shanghai Ocean University, and his contribution was supported by the Program of Science and Technology Commission of Shanghai Municipality (09320503700).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5766–5789, doi:10.1002/2014JC010490.
    Description: Impacts of the multichannel river network on plume dynamics in the Pearl River estuary were examined using a high-resolution 3-D circulation model. The results showed that during the dry season the plume was a distinct feature along the western coast of the estuary. The plume was defined as three water masses: (a) riverine water (〈5 psu), (b) estuarine water (12–20 psu), and (c) diluted water (〉22 psu), respectively. A significant amount of low-salinity water from Hengmen and Hongqimen was transported through a narrow channel between the QiAo Island and the mainland of the Pearl River delta during the ebb tide and formed a local salinity-gradient feature (hereafter referred to as a discharge plume). This discharge plume was a typical small-scale river plume with a Kelvin number K = 0.24 and a strong frontal boundary on its offshore side. With evidence of a significant impact on the distribution and variability of the salinity and flow over the West Shoal, this plume was thought to be a major feature of the Pearl River plume during the dry season. The upstream multichannel river network not only were the freshwater discharge sources but also played a role in establishing an estuarine-scale subtidal pressure gradient. This pressure gradient was one of the key dynamical processes controlling the water exchange between discharge and river plumes in the Pearl River estuary. This study clearly showed the role of the river network and estuary interaction on river plume dynamics.
    Description: The research work was supported by the National Natural Science Foundation of China (grant 41206005), the Ocean Public Welfare Scientific Research Project, State Oceanic Administration of the People's Republic of China (grant 201305019-3) and the CAS Strategic Pilot Science and Technology (XDA11020205). Changsheng Chen's participation was supported by the International Center for Marine Studies, Shanghai Ocean University.
    Description: 2016-02-21
    Keywords: River plume ; Multichannel river network ; River and estuary interaction ; Pearl River estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4245–4263, doi:10.1002/2015JC011475.
    Description: The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.
    Description: National Natural Science Foundation of China Grant Number: (41206005); Ocean Public Welfare Scientific Research Project, State Oceanic Administration of the People's Republic of China Grant Number: (201305019-3)
    Description: 2016-12-24
    Keywords: River plume ; Downwelling wind ; Tides ; Estuarine dynamics ; The Pearl River estuary ; FVCOM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C11010, doi:10.1029/2009JC005525.
    Description: The unstructured grid finite volume coastal ocean model (FVCOM) system has been expanded to include nonhydrostatic dynamics. This addition uses the factional step method with both split mode explicit and semi-implicit schemes. The unstructured grid finite volume method, combined with a correction of the final free surface from its intermediate value with inclusion of nonhydrostatic effects, efficiently reduces numerical damping and thus ensures second-order accuracy of the solutions with local/global volume conservation. Numerical experiments have been made to fully validate the nonhydrostatic FVCOM, including surface standing and solitary waves in idealized flat- and sloping-bottomed channels in homogeneous conditions, the density adjustment problem for lock exchange flow in a flat-bottomed channel, and two-layer internal solitary wave breaking on a sloping shelf. The model results agree well with the relevant analytical solutions and laboratory data. These validation experiments demonstrate that the nonhydrostatic FVCOM is capable of resolving complex nonhydrostatic dynamics in coastal and estuarine regions.
    Description: This research was supported by NOAA g r a n t s DOC/NOAA/NA04NMF4720332 and DOC/NOAA/ NA05NMF4721131; US GLOBEC Northwest Atlantic/Georges Bank Program NSF grants OCE‐0234545, OCE‐0227679, OCE‐0606928, OCE‐0712903, OCE‐0732084, and OCE‐0726851; MIT sea grant 2006‐ RC‐103; and NOAA NERACOOS grant NA100558 for the UMASSD team and the Smith Chair in Coastal Oceanography and NOAA grant NA‐17RJ1223 for R.C. Beardsley. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (Project J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University.
    Keywords: Nonhydrostatic ; Unstructured grid ; Finite volume method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C12049, doi:10.1029/2010JC006331.
    Description: The generation, propagation, and dissipation processes of large-amplitude nonlinear internal waves in Massachusetts Bay during the stratified season were examined using the nonhydrostatic Finite-Volume Coastal Ocean Model (FVCOM-NH). The model reproduced well the characteristics of the high-frequency internal waves observed in Massachusetts Bay in August 1998. The model experiments suggested that internal waves over Stellwagen Bank are generated by the interaction of tidal currents with steep bottom topography through a process of forming a large-density front on the western slope of the bank by the release of an initial density perturbation near ebb-flood transition, nonlinear steepening of the density front into a deep density depression, and disintegrating of the density depression into a wave train. Earth's rotation tends to transfer the cross-bank tidal kinetic energy into the along-bank direction and thus reduces the intensity of the density perturbation at ebb-flood transition and density depression in the flood period. The internal wave packet propagates as a leading edge feature of the internal tidal wave, and the faster propagation speed of the high-frequency internal waves in Massachusetts Bay is caused by Earth's rotation. The model experiments suggested that bottom friction can significantly influence the cross-bank scale of the density perturbation and thus the density depression during wave generation and the dissipation during the wave's shoaling. Inclusion of vertical mixing using the Mellor-Yamada level 2.5 turbulence closure model had only a marginal effect on wave evolution. The model results support the internal wave theory proposed by Lee and Beardsley (1974) but are in disagreement with the lee-wave mechanism proposed by Maxworthy (1979).
    Description: This research was supported by NOAA g r a n t s DOC/NOAA/NA04NMF4720332 and DOC/NOAA/ NA05NMF4721131, U.S. GLOBEC Northwest Atlantic/Georges Bank Program NSF grants (OCE‐0606928, OCE‐0712903, OCE‐0732084, OCE‐0726851, OCE0814505), and MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116), NOAA NERACOOS Program for the UMASSD team and the Smith Chair in Coastal Oceanography, and NOAA grant (NA‐17RJ1223) for R.C. Beardsley. C. Chen’s contribution is also supported by Shanghai Ocean University under grants A‐2302‐10‐0003 and 09320503700 and the State Key Laboratory for Estuarine and Coastal Research, East China Normal University.
    Keywords: Nonhydrostatic dynamics ; Internal waves ; Stellwagen Bank ; Massachusetts Bay
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 6495–6510, doi:10.1002/2013JC009455.
    Description: Moored current measurements were made at one mooring site in the northern Gulf of Tonkin for about 1 year during 1988–1989. Analyses were performed to examine characteristics and variability of tidal and subtidal flows. Rotary spectra showed two peaks at diurnal and semidiurnal periods, with higher diurnal energy. Complex demodulations of diurnal and semidiurnal tidal currents indicated that the tidal current magnitudes varied significantly with seasons: more energetic in the stratified summer than in the vertically well-mixed winter. The observed subtidal currents were highly correlated with the surface wind in winter but not in summer; challenging the conceptual summertime anticyclonic circulation pattern derived using wind-driven homogenous circulation theory. The computed currents from a global ocean model were in good agreement with the observed currents. Similar to the current observations, the model-computed flow patterns were consistent with the conceptual wind-driven circulation pattern in winter but opposite in summer. Process-oriented experiments suggest that the summertime cyclonic circulation in the northern Gulf of Tonkin forms as a result of the combination of stratified wind-driven circulation and tidal-rectified inflow from Qiongzhou Strait. The interaction between the southwest monsoon and buoyancy-driven flow from Hong River can significantly intensify the cyclonic circulation near the surface, but its contribution to the vertically averaged flow of the cyclonic circulation is limited.
    Description: Y. Ding has been supported by the State Scholarship Fund from the China Scholarship Council. C. Chen serves as chief scientist for the International Center for Marine Studies, Shanghai Ocean University, and his contribution has been supported by the Program of Science and Technology Commission of Shanghai Municipality (09320503700). C. Chen serves as the Zi Jiang Scholar at the State Key Laboratory for Estuarine and Coastal Research (SKLEC) of East China Normal University (ECNU) and Visiting Professor at School of Marine Sciences, Sun Yat-Sen University. C. Chen would like to credit this research to these two universities. Z. Lai’s contribution is supported by NSFC project 41206005 and Sun Yat-Sen University 985 grant 42000–3281301. The development of Global-FVCOM was funded by the US National Science Foundation Office of Polar Programs through grants ARC0712903, ARC0732084, ARC0804029, and ARC1203393.
    Description: 2014-06-03
    Keywords: Current measurements ; Circulation ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 5289–5310, doi:10.1002/2014JC009931.
    Description: Synthesis analyses were performed to examine characteristics of tidal and subtidal currents at eight mooring sites deployed over the northern South China Sea (NSCS) continental shelf in the 2006–2007 and 2009–2010 winters. Rotary spectra and harmonic analysis results showed that observed tidal currents in the NSCS were dominated by baroclinic diurnal tides with phases varying both vertically and horizontally. This feature was supported by the CC-FVCOM results, which demonstrated that the diurnal tidal flow over this shelf was characterized by baroclinic Kelvin waves with vertical phase differences varying in different flow zones. The northeasterly wind-induced southwestward flow prevailed over the NSCS shelf during winter, with episodic appearances of mesoscale eddies and a bottom-intensified buoyancy-driven slope water intrusion. The moored current records captured a warm-core anticyclonic eddy, which originated from the southwestern coast of Taiwan and propagated southwestward along the slope consistent with a combination of β-plane and topographic Rossby waves. The eddy was surface-intensified with a swirl speed of 〉50 cm/s and a vertical scale of ∼400 m. In absence of eddies and onshore deep slope water intrusion, the observed southwestward flow was highly coherent with the northeasterly wind stress. Observations did not support the existence of the permanent wintertime South China Sea Warm Current (SCSWC). The definition of SCSWC, which was based mainly on thermal wind calculations with assumed level of no motion at the bottom, needs to be interpreted with caution since the observed circulation over the NSCS shelf in winter included both barotropic and baroclinic components.
    Description: R. Li was supported by the SOA 908 Special Project Foundation of China (908-01-ST07 and 908-01-BC10), the National High Tech Project Foundation (863) of China (2008AA09A401), the Administrator Foundation of South Branch, SOA (0683). The development of FVCOM was funded by the US NSF Office of Polar Programs through grants ARC0712903, ARC0732084, ARC0804029, and ARC1203393.
    Description: 2015-02-19
    Keywords: Mooring ; Circulation ; Eddy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05011, doi:10.1029/2007JC004548.
    Description: Twin experiments were made to compare the reduced rank Kalman filter (RRKF), ensemble Kalman filter (EnKF), and ensemble square-root Kalman filter (EnSKF) for coastal ocean problems in three idealized regimes: a flat bottom circular shelf driven by tidal forcing at the open boundary; an linear slope continental shelf with river discharge; and a rectangular estuary with tidal flushing intertidal zones and freshwater discharge. The hydrodynamics model used in this study is the unstructured grid Finite-Volume Coastal Ocean Model (FVCOM). Comparison results show that the success of the data assimilation method depends on sampling location, assimilation methods (univariate or multivariate covariance approaches), and the nature of the dynamical system. In general, for these applications, EnKF and EnSKF work better than RRKF, especially for time-dependent cases with large perturbations. In EnKF and EnSKF, multivariate covariance approaches should be used in assimilation to avoid the appearance of unrealistic numerical oscillations. Because the coastal ocean features multiscale dynamics in time and space, a case-by-case approach should be used to determine the most effective and most reliable data assimilation method for different dynamical systems.
    Description: P. Malanotte-Rizzoli and J. Wei were supported by the Office of Naval Research (ONR grant N00014-06-1- 0290); C. Chen and Q. Xu were supported by the U.S. GLOBEC/Georges Bank program (through NSF grants OCE-0234545, OCE-0227679, OCE- 0606928, OCE-0712903, OCE-0726851, and OCE-0814505 and NOAA grant NA-16OP2323), the NSF Arctic research grants ARC0712903, ARC0732084, and ARC0804029, and URI Sea Grant R/P-061; P. Xue was supported through the MIT Sea Grant 2006-RC-103; Z. Lai, J. Qi, and G. Cowles were supported through the Massachusetts Marine Fisheries Institute (NOAA grants NA04NMF4720332 and NA05NMF4721131); and R. Beardsley was supported through U.S. GLOBEC/Georges Bank NSF grant OCE-02227679, MIT Sea Grant NA06OAR1700019, and the WHOI Smith Chair in Coastal Oceanography.
    Keywords: Kalman filters ; Data assimilation ; Ocean modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/x-tex
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...