GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Ocean Modelling 47 (2012): 26-40, doi:10.1016/j.ocemod.2012.01.006.
    Beschreibung: A dike-groyne module is developed and implemented into the unstructured-grid, three dimensional primitive equation Finite-Volume Coastal Ocean Model (FVCOM) for the study of the hydrodynamics around human-made construction in the coastal area. The unstructured-grid finite-volume flux discrete algorithm makes this module capable of realistically including narrow-width dikes and groynes with free exchange in the upper column and solid blocking in the lower column in a terrain-following coordinate system. This algorithm used in the module is validated for idealized cases with emerged and/or submerged dikes and a coastal seawall where either analytical solutions or laboratory experiments are available for comparison. As an example, this module is applied to the Changjiang Estuary where a dike-groyne structure was constructed in the Deep Waterway channel in the inner shelf of the East China Sea (ECS). Driven by the same forcing under given initial and boundary conditions, a comparison was made for model-predicted flow and salinity via observations between dike-groyne and bed-conforming slope algorithms. The results show that with realistic resolution of water transport above and below the dike-groyne structures, the new method provides more accurate results. FVCOM with this MPI-architecture parallelized dike-groyne module provides a new tool for ocean engineering and inundation applications in coastal regions with dike, seawall and/or dam structures.
    Beschreibung: J. Ge and P. Ding have been supported by the Fund for Creative Research Groups of NSFC (No. 41021064), the PhD Program Scholarship Fund (2009010) of East China Normal University (ECNU), and the State Scholarship Fund from China Scholarship Council. C. Chen, J. Qi and R. C. Beardsley have been funded by the Northeast Regional Association of Coastal Ocean Observing Systems (NERACOOS), the IOOS/SURA Super-Regional Coastal Modeling Testbed, MIT Sea Grant NA06OAR4170019 and 571000271, and NSF grants OCE0606928, OCE0712903, OCE0732084, OCE0726851, OCE0814505, and OCE0804029.
    Schlagwort(e): Dike-Groyne ; Changjiang estuary ; Finite volume method ; Unstructured grid
    Repository-Name: Woods Hole Open Access Server
    Materialart: Preprint
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 121 (2016): 4392–4415, doi:10.1002/2016JC011634.
    Beschreibung: A high-resolution (up to 2 km), unstructured-grid, fully coupled Arctic sea ice-ocean Finite-Volume Community Ocean Model (AO-FVCOM) was employed to simulate the flow and transport through the Canadian Arctic Archipelago (CAA) over the period 1978–2013. The model-simulated CAA outflow flux was in reasonable agreement with the flux estimated based on measurements across Davis Strait, Nares Strait, Lancaster Sound, and Jones Sounds. The model was capable of reproducing the observed interannual variability in Davis Strait and Lancaster Sound. The simulated CAA outflow transport was highly correlated with the along-strait and cross-strait sea surface height (SSH) difference. Compared with the wind forcing, the sea level pressure (SLP) played a dominant role in establishing the SSH difference and the correlation of the CAA outflow with the cross-strait SSH difference can be explained by a simple geostrophic balance. The change in the simulated CAA outflow transport through Davis Strait showed a negative correlation with the net flux through Fram Strait. This correlation was related to the variation of the spatial distribution and intensity of the slope current over the Beaufort Sea and Greenland shelves. The different basin-scale surface forcings can increase the model uncertainty in the CAA outflow flux up to 15%. The daily adjustment of the model elevation to the satellite-derived SSH in the North Atlantic region outside Fram Strait could produce a larger North Atlantic inflow through west Svalbard and weaken the outflow from the Arctic Ocean through east Greenland.
    Beschreibung: NSF Grant Numbers: OCE-1203393, PLR-1203643; National Natural Science Foundation of China Grant Number: 41276197; Shanghai Pujiang Program Grant Number: 12PJ1404100; Shanghai Shuguang Program
    Beschreibung: 2016-12-25
    Schlagwort(e): Water transport ; Canadian Arctic Archipelago ; Atmospheric forcing ; Sea surface height
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07052, doi:10.1029/2007JC004328.
    Beschreibung: The tidal flooding/drying process in the Satilla River Estuary was examined using an unstructured-grid finite-volume coastal ocean model (FVCOM). Driven by tidal forcing at the open boundary and river discharge at the upstream end, FVCOM produced realistic tidal flushing in this estuarine tidal-creek intertidal salt-marsh complex, amplitudes and phases of the tidal wave, and salinity observed at mooring sites and along hydrographic transects. The model-predicted residual flow field is characterized by multiscale eddies in the main channel, which are verified by ship-towed ADCP measurements. To examine the impact of complex coastal geometry on water exchange in an estuarine tidal-creek salt-marsh system, FVCOM was compared with our previous structured-grid finite difference Satilla River Estuary model (ECOM-si). The results suggest that by failing to resolve the complex coastal geometry of tidal creeks, barriers and islands, a model can generate unrealistic flow and water exchange and thus predict the wrong dynamics for this estuary. A mass-conservative unstructured-grid model is required to accurately and efficiently simulate tidal flow and flushing in a complex geometrically controlled estuarine dynamical system.
    Beschreibung: This research was supported by the Georgia Sea grant (NA26RG0373 and NA66RG0282), the NOAA grant (NA16OP2323), and the NSF grants (OCE0234545, OCE0606928, OCE0712903, OCE0732084, and OCE0726851) for C. Chen, by the Georgia Sea grant (RR746-007/7512067, R/HAB-12-PD, R/HAB-18-PD, RR746-011/7876867), Georgia DNR (RR 100-279-9262764), and NSF grant (OCE-0554674) for C. Li.
    Schlagwort(e): Estuary ; Tidal creek ; Salt marsh
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C00D04, doi:10.1029/2010JC006688.
    Beschreibung: A sea ice model was developed by converting the Community Ice Code (CICE) into an unstructured-grid, finite-volume version (named UG-CICE). The governing equations were discretized with flux forms over control volumes in the computational domain configured with nonoverlapped triangular meshes in the horizontal and solved using a second-order accurate finite-volume solver. Implementing UG-CICE into the Arctic Ocean finite-volume community ocean model provides a new unstructured-grid, MPI-parallelized model system to resolve the ice-ocean interaction dynamics that frequently occur over complex irregular coastal geometries and steep bottom slopes. UG-CICE was first validated for three benchmark test problems to ensure its capability of repeating the ice dynamics features found in CICE and then for sea ice simulation in the Arctic Ocean under climatologic forcing conditions. The model-data comparison results demonstrate that UG-CICE is robust enough to simulate the seasonal variability of the sea ice concentration, ice coverage, and ice drifting in the Arctic Ocean and adjacent coastal regions.
    Beschreibung: This work was supported by the NSF Arctic Program for projects with grant numbers of ARC0712903, ARC0732084, and ARC0804029. The Arctic Ocean Model Intercomparison Project (AOMIP) has provided an important guidance for model improvements and ocean studies under coordinated experiments activities. We would like to thank AOMIP PI Proshutinsky for his valuable suggestions and comments on the ice dynamics. His contribution is supported by ARC0800400 and ARC0712848. The development of FVCOM was supported by the Massachusetts Marine Fisheries Institute NOAA grants DOC/NOAA/ NA04NMF4720332 and DOC/NOAA/NA05NMF4721131; the NSF Ocean Science Program for projects of OCE‐0234545, OCE‐0227679, OCE‐ 0606928, OCE‐0712903, OCE‐0726851, and OCE‐0814505; MIT Sea Grant funds (2006‐RC‐103 and 2010‐R/RC‐116); and NOAA NERACOOS Program for the UMASS team. G. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007. C. Chen’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A‐2302‐10‐0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Schlagwort(e): Arctic Ocean ; Finite-volume ; Sea ice modeling ; Unstructured-grid
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 2685–2701, doi:10.1002/jgrc.20207.
    Beschreibung: Hurricane Bob moved up the U.S. east coast and crossed over southern New England and the Gulf of Maine [with peak marine winds up to 54 m/s (100 mph)] on 19–20 August 1991, causing significant damage along the coast and shelf. A 3-D fully wave-current-coupled finite-volume community ocean model system was developed and applied to simulate and examine the coastal ocean responses to Hurricane Bob. Results from process study-oriented experiments showed that the impact of wave-current interaction on surge elevation varied in space and time, more significant over the shelf than inside the inner bays. While sea level change along the coast was mainly driven by the water flux controlled by barotropic dynamics and the vertically integrated highest water transports were essentially the same for cases with and without water stratification, the hurricane-induced wave-current interaction could generate strong vertical current shear in the stratified areas, leading to a strong offshore transport near the bottom and vertical turbulent mixing over the continental shelf. Stratification could also result in a significant difference of water currents around islands where the water is not vertically well mixed.
    Beschreibung: This work was supported by the MIT Sea Grant College Program through grant 2012-R/RC-127 and the NOAA NERACOOS Program funds for NECOFS. The development of the FVCOM system has been supported by the NSF Ocean Sciences Division through grants OCE-0234545, OCE-0227679, OCE-0606928, and OCE- 0712903 and the NSF Office of Polar Programs-Arctic Sciences Division through grants ARC0712903, ARC0732084, ARC0804029, and ARC1203393. C.C.’s contribution was also supported by Shanghai Ocean University International Cooperation Program (A-2302-11-0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), and the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50702).
    Beschreibung: 2013-11-30
    Schlagwort(e): Hydrodynamic modeling ; Surface waves and tides ; Tsunamis ; Storm surges
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 118 (2013): 5054–5073, doi:10.1002/jgrc.20397.
    Beschreibung: The Integrated Ocean Observing System Super-regional Coastal Modeling Testbed had one objective to evaluate the capabilities of three unstructured-grid fully current-wave coupled ocean models (ADCIRC/SWAN, FVCOM/SWAVE, SELFE/WWM) to simulate extratropical storm-induced inundation in the US northeast coastal region. Scituate Harbor (MA) was chosen as the extratropical storm testbed site, and model simulations were made for the 24–27 May 2005 and 17–20 April 2007 (“Patriot's Day Storm”) nor'easters. For the same unstructured mesh, meteorological forcing, and initial/boundary conditions, intermodel comparisons were made for tidal elevation, surface waves, sea surface elevation, coastal inundation, currents, and volume transport. All three models showed similar accuracy in tidal simulation and consistency in dynamic responses to storm winds in experiments conducted without and with wave-current interaction. The three models also showed that wave-current interaction could (1) change the current direction from the along-shelf direction to the onshore direction over the northern shelf, enlarging the onshore water transport and (2) intensify an anticyclonic eddy in the harbor entrance and a cyclonic eddy in the harbor interior, which could increase the water transport toward the northern peninsula and the southern end and thus enhance flooding in those areas. The testbed intermodel comparisons suggest that major differences in the performance of the three models were caused primarily by (1) the inclusion of wave-current interaction, due to the different discrete algorithms used to solve the three wave models and compute water-current interaction, (2) the criterions used for the wet-dry point treatment of the flooding/drying process simulation, and (3) bottom friction parameterizations.
    Beschreibung: This project was supported by NOAA via the U.S.IOOS Office (award: NA10NOS0120063 and NA11NOS0120141) and was managed by the Southeastern Universities Research Association. The Scituate FVCOM setup was supported by the NOAA-funded IOOS NERACOOS program for NECOFS and the MIT Sea Grant College Program through grant 2012-R/RC-127.
    Beschreibung: 2014-04-07
    Schlagwort(e): Intermodel comparisons ; Inundation prediction
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12010, doi:10.1029/2011JC007054.
    Beschreibung: The unstructured-grid, Finite-Volume Community Ocean Model (FVCOM) was used to simulate the tides in the Gulf of Maine (GoM) and New England Shelf (NES) for homogeneous and summer stratified conditions. FVCOM captures the near-resonant nature of the semidiurnal tide and energy flux in the GoM and the complex dynamics governing the tide in the NES. Stratification has limited impact on tidal elevation, but can significantly modify the tidal current profile. Internal tides are energetic in the stratified regions over steep bottom topography, but their contribution to the total tidal energy flux is only significant over the northeast flank of Georges Bank. The model suggests that the tidal flushing-induced eddy east of Monomoy Island is the dynamic basis for the locally observed phase lead of the M2 tide. The southward propagating tidal wave east of Cape Cod encounters the northeastward propagating tidal wave from the NES south of Nantucket Island, forming a zone of minimum sea level along a southeast-oriented line from Nantucket Island. These two waves are characterized by linear dynamics in which bottom friction and advection are negligible in the momentum balance, but their superposition leads to a strong nonlinear current interaction and large bottom stress in the zone of lowest sea elevation.
    Beschreibung: This research is supported by the U.S. GLOBEC Northwest Atlantic/Georges Bank Program NSF (OCE-0234545, 0227679, 0606928, 0726851 and 0814505) to Changsheng Chen and Qixchun Xu and NSF grant (OCE-02-27679) and the WHOI Smith Chair to Robert Beardsley and Richard Limeburner. The tidal model-data comparison on Nantucket Sound/Shoals is partially the result of research sponsored by the MIT Sea Grant College Program, under NOAA grant NA06OAR4170019, MIT SG project 2006-R/RC-102, 2006-R/RC-103, 2006-R/RC-102, 2006-R/RC-107, 2008-R/RC-107), 2010-R/RC-116 and the NOAA NERACOOS Program for the UMASS team. C. Chen’s contribution is also supported by Shanghai Ocean University International Cooperation Program (A-2302-11-0003), the Program of Science and Technology Commission of Shanghai Municipality (09320503700), the Leading Academic Discipline Project of Shanghai Municipal Education Commission (project J50702), and Zhi jiang Scholar and 111 project funds of the State Key Laboratory for Estuarine and Coastal Research, East China Normal University (ECNU).
    Beschreibung: 2012-06-10
    Schlagwort(e): Ocean modeling ; Tidal dynamics
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02002, doi:10.1029/2006JC003994.
    Beschreibung: Physical mechanisms for the summertime offshore detachment of the Changjiang Diluted Water (CDW) into the East China Sea are examined using the high-resolution, unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM). The model results suggest that isolated low salinity water lens detected west of Cheju Island can be formed by (1) a large-scale adjustment of the flow field to the Changjiang discharge and (2) the detachment of anticyclonic eddies as a result of baroclinic instability of the CDW front. Adding the Changjiang discharge intensifies the clockwise vorticity of the subsurface current (originating from the Taiwan Warm Current) flowing along the 50-m isobath and thus drives the low-salinity water in the northern coastal area of the Changjiang mouth offshore over a submerged plateau that extends toward Cheju Island. Given a model horizontal resolution of less than 1.0 km, the CDW front becomes baroclinically unstable and forms a chain of anticyclonic and cyclonic eddies. The offshore detachment of anticyclonic eddies can carry the CDW offshore. This process is enhanced under northward winds as a result of the spatially nonuniform interaction of wind-induced Ekman flow and eddy-generated frontal density currents. Characteristics of the model-predicted eddy field are consistent with previous theoretical studies of baroclinic instability of buoyancy-driven coastal density currents and existing satellite imagery. The plume stability is controlled by the horizontal Ekman number. In the Changjiang, this number is much smaller than the criterion suggested by a theoretical analysis.
    Beschreibung: The development of FVCOM is supported by the Massachusetts Fisheries Institute through NOAA grants DOC/ NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131 and also the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545 and OCE-0227679, NOAA grant NA160P2323 and ONR subcontract grant from Woods Hole Oceanographic Institution. P. Ding is supported by the Chinese National Key Basic Research Project grant 2002CB412403. X. Mao is supported by the National Natural Science Foundation of China (NSFC) grant 40576079.
    Schlagwort(e): Unstructured grid model ; Eddies ; River plume baroclinic instability
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C05011, doi:10.1029/2007JC004548.
    Beschreibung: Twin experiments were made to compare the reduced rank Kalman filter (RRKF), ensemble Kalman filter (EnKF), and ensemble square-root Kalman filter (EnSKF) for coastal ocean problems in three idealized regimes: a flat bottom circular shelf driven by tidal forcing at the open boundary; an linear slope continental shelf with river discharge; and a rectangular estuary with tidal flushing intertidal zones and freshwater discharge. The hydrodynamics model used in this study is the unstructured grid Finite-Volume Coastal Ocean Model (FVCOM). Comparison results show that the success of the data assimilation method depends on sampling location, assimilation methods (univariate or multivariate covariance approaches), and the nature of the dynamical system. In general, for these applications, EnKF and EnSKF work better than RRKF, especially for time-dependent cases with large perturbations. In EnKF and EnSKF, multivariate covariance approaches should be used in assimilation to avoid the appearance of unrealistic numerical oscillations. Because the coastal ocean features multiscale dynamics in time and space, a case-by-case approach should be used to determine the most effective and most reliable data assimilation method for different dynamical systems.
    Beschreibung: P. Malanotte-Rizzoli and J. Wei were supported by the Office of Naval Research (ONR grant N00014-06-1- 0290); C. Chen and Q. Xu were supported by the U.S. GLOBEC/Georges Bank program (through NSF grants OCE-0234545, OCE-0227679, OCE- 0606928, OCE-0712903, OCE-0726851, and OCE-0814505 and NOAA grant NA-16OP2323), the NSF Arctic research grants ARC0712903, ARC0732084, and ARC0804029, and URI Sea Grant R/P-061; P. Xue was supported through the MIT Sea Grant 2006-RC-103; Z. Lai, J. Qi, and G. Cowles were supported through the Massachusetts Marine Fisheries Institute (NOAA grants NA04NMF4720332 and NA05NMF4721131); and R. Beardsley was supported through U.S. GLOBEC/Georges Bank NSF grant OCE-02227679, MIT Sea Grant NA06OAR1700019, and the WHOI Smith Chair in Coastal Oceanography.
    Schlagwort(e): Kalman filters ; Data assimilation ; Ocean modeling
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/x-tex
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C08017, doi:10.1029/2008JC004941.
    Beschreibung: A spherical coordinate version of the unstructured grid 3-D FVCOM (finite volume coastal ocean model) has been applied to the Arctic Ocean to simulate tides with a horizontal resolution ranging from 1 km in the near-coastal areas to 15 km in the deep ocean. By accurately resolving the irregular coastlines and bathymetry in the Arctic Ocean coastal regions, this model reproduces the diurnal (K1 and O1) and semidiurnal (M2 and S2) tidal wave dynamics and captures the complex tidal structure along the coast, particularly in the narrow straits of the Canadian Archipelago. The simulated tidal parameters (harmonic constituents of sea surface elevation and currents) agree well with the available observational data. High-resolution meshes over the continental shelf and slope capture the detailed spatial structure of topographic trapped shelf waves, which are quite energetic along the Greenland, Siberia, and Spitsbergen continental slope and shelf break areas. Water stratification influences the vertical distribution of tidal currents but not the water transport and thus tidal elevation. The comparison with previous finite difference models suggests that horizontal resolution and geometric fitting are two prerequisites to simulate realistically the tidal energy flux in the Arctic Ocean, particularly in the Canadian Archipelago.
    Beschreibung: This research was supported by the NSF Office of Polar Programs through grants OPP ARC-0712903, ARC- 0732084, and ARC-0804029 for C. Chen, G. Gao, and G. Cowles; OPP ARC-0804010 and ARC-0712848 for A. Proshutinsky; OPP ANT-0523223, ARC0712848, NOAA Cooperative Agreement NA17RJ1223 (409) and the WHOI Smith Chair for R. C. Beardsley. J. Qi was supported by the SMAST fishery program under NOAA grants NA04NMF4720332 and NA05NMF4721131. The spherical coordinate version of FVCOM was developed with initial funds from NSF grants OCE-0606928 and OCE- 0726851. Gao was also supported by the Chinese NSF Arctic Ocean grant under contract 40476007.
    Schlagwort(e): FVCOM ; Arctic Ocean tides ; Intermodel comparisons
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Format: text/plain
    Format: image/tiff
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...