GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Trimborn, Scarlett; Thoms, Silke; Brenneis, Tina; Heiden, Jasmin; Beszteri, Sara; Bischof, Kai (2017): Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica. Physiologia Plantarum, https://doi.org/10.1111/ppl.12539
    Publication Date: 2024-03-15
    Description: To better understand the impact of ocean acidification (OA) and changes in light availability on Southern Ocean phytoplankton physiology, we investigated the effects of pCO2 (380 and 800 µatm) in combination with low and high irradiance (20 or 50 and 200 µmol photons/m2/s) on growth, particulate organic carbon (POC) fixation and photophysiology in the three ecologically relevant species Chaetoceros debilis, Fragilariopsis kerguelensis and Phaeocystis antarctica. Irrespective of the light scenario, neither growth nor POC per cell was stimulated by OA in any of the tested species and the two diatoms even displayed negative responses in growth (e.g. C. debilis) or POC content (e.g. F. kerguelensis) under OA in conjunction with high light. For both diatoms, also maximum quantum yields of PSII (Fv/Fm) were decreased under these conditions, indicating lowered photochemical efficiencies. To counteract the negative effects by OA and high light, the two diatoms showed diverging photoacclimation strategies. While cellular chlorophyll a and fucoxanthin contents were enhanced in C. debilis to potentially maximize light absorption, F. kerguelensis exhibited reduced chlorophyll a per cell, increased disconnection of antennae from photosystem II reaction centers and strongly lowered absolute electron transport rates (ETR). The decline in ETRs in F. kerguelensis might be explained in terms of different species-specific strategies for tuning the available flux of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Overall, our results revealed that P. antarctica was more tolerant to OA and changes in irradiance than the two diatoms, which may have important implications for biogeochemical cycling.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chaetoceros debilis; Chromista; Electron transport rate; Electron transport rate, standard deviation; Fragilariopsis kerguelensis; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Haptophyta; Irradiance; Laboratory experiment; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Non photochemical quenching; Non photochemical quenching, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phaeocystis antarctica; Phytoplankton; Polar; Primary production/Photosynthesis; Registration number of species; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Yield; Yield, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 7396 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Heiden, Jasmin; Völkner, Christian; Jones, Elizabeth M; van De Poll, Willem H; Buma, Anita G J; Meredith, Michael P; de Baar, Hein J W; Bischof, Kai; Wolf-Gladrow, Dieter A; Trimborn, Scarlett (2019): Impact of ocean acidification and high solar radiation on productivity and species composition of a late summer phytoplankton community of the coastal Western Antarctic Peninsula. Limnology and Oceanography, 64(4), 1716-1736, https://doi.org/10.1002/lno.11147
    Publication Date: 2024-03-18
    Description: The Western Antarctic Peninsula (WAP), one of the most productive regions of the Southern Ocean, is currently undergoing rapid environmental changes such as ocean acidification (OA) and increased daily irradiances from enhanced surface‐water stratification. To assess the potential for future biological CO2 sequestration of this region, we incubated a natural phytoplankton assemblage from Ryder Bay, WAP, under a range of pCO2 levels (180 μatm, 450 μatm, and 1000 μatm) combined with either moderate or high natural solar radiation (MSR: 124 μmol photons/m**2/s and HSR: 435 μmol photons/ m**2/s, respectively). The initial and final phytoplankton communities were numerically dominated by the prymnesiophyte Phaeocystis antarctica, with the single cells initially being predominant and solitary and colonial cells reaching similar high abundances by the end. Only when communities were grown under ambient pCO2 in conjunction with HSR did the small diatom Fragilariopsis pseudonana outcompete P. antarctica at the end of the experiment. Such positive light‐dependent growth response of the diatom was, however, dampened by OA. These changes in community composition were caused by an enhanced photosensitivity of diatoms, especially F. pseudonana, under OA and HSR, reducing thereby their competitiveness toward P. antarctica. Moreover, community primary production (PP) of all treatments yielded similar high rates at the start and the end of the experiment, but with the main contributors shifting from initially large to small cells toward the end. Even though community PP of Ryder Bay phytoplankton was insensitive to the changes in light and CO2 availability, the observed size‐dependent shift in productivity could, however, weaken the biological CO2 sequestration potential of this region in the future.
    Keywords: (Diadinoxanthin + Diatoxanthin)/chlorophyll a ratio; (Diadinoxanthin + Diatoxanthin)/chlorophyll a ratio, standard deviation; Abundance; Alkalinity, total; Alkalinity, total, standard deviation; Antarctic; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard deviation; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a/particulate organic carbon ratio, standard deviation; Community composition and diversity; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Light; Net primary production of carbon per particulate organic carbon; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, production, standard deviation; Particulate organic carbon production; Pelagos; pH; pH, standard deviation; Phosphate; Polar; Primary production/Photosynthesis; Primary production of carbon, standard deviation; Rothera_OA; Salinity; Silicate; Silicate, standard deviation; Species; Temperature, water; Thymidine uptake rate, standard deviation; Time point, descriptive; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 3185 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hofmann, Laurie C; Heiden, Jasmin; Bischof, Kai; Teichberg, Mirta (2013): Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta, 239(1), 231-242, https://doi.org/10.1007/s00425-013-1982-1
    Publication Date: 2024-03-15
    Description: Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate of calcium carbonate; Calcite saturation state; Calcium carbonate; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, total; Carbon, organic, total; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbonic anhydrase, activity; Carbon organic/inorganic ratio; Chlorophyta; Coast and continental shelf; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Halimeda opuntia; Initial slope of rapid light curve; Laboratory experiment; Light saturation point; Macroalgae; Macro-nutrients; Maximal electron transport rate, relative; Mesocosm or benthocosm; Nitrate reductase activity; Nitrogen, total; Nitrogen/Phosphorus ratio; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phosphorus; Plantae; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Salinity; Single species; Species; Temperature, water; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 466 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Heiden, Jasmin; Thoms, Silke; Bischof, Kai; Trimborn, Scarlett (2018): Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation. Journal of Phycology, https://doi.org/10.1111/jpy.12753
    Publication Date: 2024-03-15
    Description: Impacts of rising atmospheric CO2 concentrations and increased daily irradiances from enhanced surface water stratification on phytoplankton physiology in the coastal Southern Ocean remain still unclear. Therefore, in the two Antarctic diatoms Fragilariopsis curta and Odontella weissflogii the effects of moderate and high natural solar radiation combined with either ambient or future pCO2 on cellular particulate organic carbon (POC) contents and photophysiology were investigated. Results showed that increasing CO2 concentrations had greater impacts on diatom physiology than exposure to increasing solar radiation. Irrespective of the applied solar radiation regime, cellular POC quotas increased with future pCO2 in both diatoms. Lowered maximum quantum yields of photochemistry in PSII (Fv/Fm) indicated a higher photosensitivity under these conditions, being counteracted by increased cellular concentrations of functional photosynthetic reaction centers. Overall, our results suggest that both bloom‐forming Antarctic coastal diatoms might increase carbon contents under future pCO2 conditions despite reduced physiological fitness. This indicates a higher potential for primary productivity by the two diatom species with important implications for the CO2 sequestration potential of diatom communities in the future coastal Southern Ocean.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate, per cell; Carbon, organic, particulate, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Coast and continental shelf; Fragilariopsis curta; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Light; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Nitrogen, organic, particulate, per cell; Nitrogen, organic, particulate, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Odontella weissflogii; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Polar; Primary production/Photosynthesis; Registration number of species; Salinity; Silicate; Single species; Species; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 304 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-29
    Description: Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2019-06-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Gordon Research Conference: Ocean Global Change Biology, 2016-07-17-2016-07-22
    Publication Date: 2017-02-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Gordon Research Conference: Ocean Global Change Biology, 2016-07-17-2016-07-22
    Publication Date: 2017-02-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3European Marine Biology Symposium, 2015-09-21-2015-09-25
    Publication Date: 2017-02-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...