GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1473-1485, doi:10.1121/1.1828501.
    Description: The three-dimensional beam pattern of a sperm whale (Physeter macrocephalus) tagged in the Ligurian Sea was derived using data on regular clicks from the tag and from hydrophones towed behind a ship circling the tagged whale. The tag defined the orientation of the whale, while sightings and beamformer data were used to locate the whale with respect to the ship. The existence of a narrow, forward-directed P1 beam with source levels exceeding 210 dBpeak re: 1 µPa at 1 m is confirmed. A modeled forward-beam pattern, that matches clicks 〉20° off-axis, predicts a directivity index of 26.7 dB and source levels of up to 229 dBpeak re: 1 µPa at 1 m. A broader backward-directed beam is produced by the P0 pulse with source levels near 200 dBpeak re: 1 µPa at 1 m and a directivity index of 7.4 dB. A low-frequency component with source levels near 190 dBpeak re: 1 µPa at 1 m is generated at the onset of the P0 pulse by air resonance. The results support the bent-horn model of sound production in sperm whales. While the sperm whale nose appears primarily adapted to produce an intense forward-directed sonar signal, less-directional click components convey information to conspecifics, and give rise to echoes from the seafloor and the surface, which may be useful for orientation during dives.
    Description: This work was funded by grants from the Office of Naval Research Grants N00014-99-1-0819 and N00014-01-1-0705, and the Packard Foundation.
    Keywords: Bioacoustics ; Biocommunications ; Array signal processing ; Echo ; Hydrophones ; Multidimensional signal processing ; Underwater sound ; Sonar signal processing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 309 (2006): 279-295, doi:10.3354/meps309279.
    Description: The demand for renewable energy has led to construction of offshore wind farms with high-power turbines, and many more wind farms are being planned for the shallow waters of the world’s marine habitats. The growth of offshore wind farms has raised concerns about their impact on the marine environment. Marine mammals use sound for foraging, orientation and communication and are therefore possibly susceptible to negative effects of man-made noise generated from constructing and operating large offshore wind turbines. This paper reviews the existing literature and assesses zones of impact from different noise-generating activities in conjunction with wind farms on 4 representative shallow-water species of marine mammals. Construction involves many types of activities that can generate high sound pressure levels, and pile-driving seems to be the noisiest of all. Both the literature and modeling show that pile-driving and other activities that generate intense impulses during construction are likely to disrupt the behavior of marine mammals at ranges of many kilometers, and that these activities have the potential to induce hearing impairment at close range. The reported noise levels from operating wind turbines are low, and are unlikely to impair hearing in marine mammals. The impact zones for marine mammals from operating wind turbines depend on the low-frequency hearing-abilities of the species in question, on sound-propagation conditions, and on the presence of other noise sources such as shipping. The noise impact on marine mammals is more severe during the construction of wind farms than during their operation.
    Description: This study was funded by Massachusetts Technology Collaborative grant # OWEC-05-02. M.W. was funded by the Carlsberg Foundation. The work of K.L. was partially supported by the German Federal Agency for Nature Conservation through the German Ministry for the Environment.
    Keywords: Marine mammal ; Wind turbine ; Pile-driving ; Underwater noise ; Impact zones ; Masking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 582-592, doi:10.1121/1.3662067.
    Description: Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7±6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.
    Description: This study received support from the Danish Ph.D. School of Aquatic Sciences (SOAS), Aarhus University, DK, WWF Verdensnaturfonden and Aase & Ejnar Danielsens Foundation, the Siemens Foundation, the Faculty of Science at the University of Aarhus, DK, and the Danish Natural Science Foundation via a Steno scholarship and a logistics grant to PTM.
    Keywords: Acoustic arrays ; Acoustic noise ; Acoustic radiators ; Acoustic variables measurement ; Acoustic wave transmission ; Biocommunications ; Global Positioning System ; Hydrophones ; Underwater sound
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 223(1), (2019): jeb.212498, doi: 10.1242/jeb.212498.
    Description: Toothed whales depend on sound for communication and foraging, making them potentially vulnerable to acoustic masking from increasing anthropogenic noise. Masking effects may be ameliorated by higher amplitudes or rates of calling, but such acoustic compensation mechanisms may incur energetic costs if sound production is expensive. The costs of whistling in bottlenose dolphins (Tursiops truncatus) have been reported to be much higher (20% of resting metabolic rate, RMR) than theoretical predictions (0.5–1% of RMR). Here, we address this dichotomy by measuring the change in the resting O2 consumption rate (V̇O2), a proxy for RMR, in three post-absorptive bottlenose dolphins during whistling and silent trials, concurrent with simultaneous measurement of acoustic output using a calibrated hydrophone array. The experimental protocol consisted of a 2-min baseline period to establish RMR, followed by a 2-min voluntary resting surface apnea, with or without whistling as cued by the trainers, and then a 5-min resting period to measure recovery costs. Daily fluctuations in V̇O2 were accounted for by subtracting the baseline RMR from the recovery costs to estimate the cost of apnea with and without whistles relative to RMR. Analysis of 52 sessions containing 1162 whistles showed that whistling did not increase metabolic cost (P〉0.1, +4.2±6.9%) as compared with control trials (−0.5±5.9%; means±s.e.m.). Thus, we reject the hypothesis that whistling is costly for bottlenose dolphins, and conclude that vocal adjustments such as the Lombard response to noise do not represent large direct energetic costs for communicating toothed whales.
    Description: M.P.B. received financial support from a Company of Biologists JEB travel fellowship JEBTF181150, and a grant from the Danish Acoustical Society. F.H.J. was supported by an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7 program of the EU (agreement no. 609033). P.T.M. and recording equipment were funded by a large frame grant from Danish Council for Independent Research | Natural Sciences (Natur og Univers, Det Frie Forskningsråd). A.F. was supported by Fundación Oceanogràfic de la Comunitat Valenciana and Global Diving Research.
    Description: 2020-12-03
    Keywords: Respiratory physiology ; Sound production ; Acoustic communication ; Underwater noise ; Vocal modifications ; Toothed whales
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...