GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Alkalinity, total; Ammonium; Ammonium molybdate reaction (FIASTAR 5000), (0.3 µm GF-75 prefiltered (Sterlitech)); BIBS; Bicarbonate ion; Bridging in Biodiversity Science; Calcium; Calcium carbonate; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, particulate; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon, total, particulate; Carbonate ion; Carbon dioxide; Carbon dioxide, partial pressure; Chloride; Climate change; Climate driven Changes in Biodiversity of Microbiota; Conductivity, electrolytic; cyanobacteria; DATE/TIME; Day of experiment; DCM; DEPTH, water; Depth of Secchi Disk; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure; Enclosure experiment; Flow-injection analyzer; Flow-injection analyzer (0.3 µm GF-75 prefiltered (Sterlitech)); Fugacity of carbon dioxide in seawater; Germany; High temperature combustion, infra-red detection (Shimadzu), (0.3 µm GF-75 prefiltered (Sterlitech)); Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Ion chromatography (Dionex), (0.3 µm GF-75 prefiltered (Sterlitech)); lake; Lake_Stechlin; Magnesium; mesocosm; Mesocosm label; Nitrate; Nitrite; Nitrogen, total; Nitrogen, total, particulate; Nitrogen, total dissolved; NITROLIMIT; Oxygen; Oxygen/Nitrogen ratio; Oxygen saturation; Oxygen sensor, YSI6560; PAR sensor Li-193SA, LI-COR Inc.; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); pH; Phosphorus, reactive soluble; Phosphorus, total; Phosphorus, total, particulate; Potassium; Pressure, technical; Radiation, photosynthetically active; SD; Secchi disk; Silicate, dissolved; Sodium; Stickstofflimitation in Binnengewässern; Sulfate; summer storm; TemBi; Temperature, air; Temperature, water; Titration; Treatment; Vaisala Weather station WXT520; water chemistry; water physics  (1)
  • BIBS; Bridging in Biodiversity Science; Calcium carbonate, particulate; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total, particulate; Climate change; Climate changes; Climate driven Changes in Biodiversity of Microbiota; cyanobacteria; DATE/TIME; Day of experiment; deep chlorophyll maximum (DCM); Derived from PIC by molar conversion; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure experiment; Enclosure experiment; Germany; Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Lake_Stechlin; Mesocosm label; mesocosm study; Nitrogen, total, particulate; NITROLIMIT; Oxygen/Nitrogen ratio; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); Phosphorus, total, particulate; sedimentation; sedimentation rates; Stickstofflimitation in Binnengewässern; TemBi; Treatment  (1)
  • BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Prokaryotes, heterotroph, particle associated; Protein production, free-living bacteria; Protein production, particle associated bacteria; SOPRAN; Surface Ocean Processes in the Anthropocene  (1)
Publikationsart
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2024-03-08
    Beschreibung: We simulated an experimental summer storm in large-volume (~1200 m3, ~16m depth) enclosures in Lake Stechlin (https://www.lake-lab.de) by mixing deeper water masses from the meta- and hypolimnion into the mixed layer (epilimnion). The mixing included the disturbance of a deep chlorophyll maximum (DCM) which was present at the same time of the experiment in Lake Stechlin and situated in the metalimnion of each enclosure during filling. Water physical variables and water chemistry was monitored for 42 days after the experimental disturbance event. Mixing disrupted the thermal stratification, increased concentrations of dissolved nutrients and CO2 and changed light conditions in the epilimnion. Mixing stimulated phytoplankton growth, thus, resulting in a bloom of Dolichospermum sp. and thereafter increased biomass of Bacillariophyceae. Subsequent, break down of both phytoplankton groups resulted in higher particulate matter sinking fluxes of particulate organic carbon (POC), total particulate nitrogen (TPN) and total particulate phosphorous (TPP) 4-5 weeks after the disturbance event. Mixing resulted in average increases in elemental downward fluxes of 9% POC, 14% total particulate Nitrogen (TPN) and 19% TPP by the end of the experiment (42 days) (n.control=4, n.mixed=4).
    Schlagwort(e): BIBS; Bridging in Biodiversity Science; Calcium carbonate, particulate; Carbon, inorganic, particulate; Carbon, organic, particulate; Carbon, total, particulate; Climate change; Climate changes; Climate driven Changes in Biodiversity of Microbiota; cyanobacteria; DATE/TIME; Day of experiment; deep chlorophyll maximum (DCM); Derived from PIC by molar conversion; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure experiment; Enclosure experiment; Germany; Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Lake_Stechlin; Mesocosm label; mesocosm study; Nitrogen, total, particulate; NITROLIMIT; Oxygen/Nitrogen ratio; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); Phosphorus, total, particulate; sedimentation; sedimentation rates; Stickstofflimitation in Binnengewässern; TemBi; Treatment
    Materialart: Dataset
    Format: text/tab-separated-values, 527 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hornick, Thomas; Bach, Lennart Thomas; Crawfurd, Katharine J; Spilling, Kristian; Achterberg, Eric Pieter; Woodhouse, Jason N; Schulz, Kai Georg; Brussaard, Corina P D; Riebesell, Ulf; Grossart, Hans-Peter (2017): Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions. Biogeosciences, 14(1), 1-15, https://doi.org/10.5194/bg-14-1-2017
    Publikationsdatum: 2024-03-06
    Beschreibung: The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (ca. 55 m**3) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO2) extending from present to future conditions. The study was conducted in July?August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO2-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO2 treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria?phytoplankton community. However, distance-based linear modelling only identified fCO2 as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO2 impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO2-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.
    Schlagwort(e): BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Prokaryotes, heterotroph, particle associated; Protein production, free-living bacteria; Protein production, particle associated bacteria; SOPRAN; Surface Ocean Processes in the Anthropocene
    Materialart: Dataset
    Format: text/tab-separated-values, 568 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-03-22
    Beschreibung: We simulated an experimental summer storm in large-volume (~1200 m3, ~16m depth) enclosures in Lake Stechlin by mixing deeper water masses from the meta- and hypolimnion into the mixed layer (epilimnion). The mixing included the disturbance of a deep chlorophyll maximum (DCM) which was present at the same time of the experiment in Lake Stechlin and situated in the metalimnion of each enclosure during filling. Water physical variables and water chemistry was monitored for 42 days after the experimental disturbance event. Mixing disrupted the thermal stratification, increasing concentrations of dissolved nutrients and CO2 and changing light conditions in the epilimnion. Mixing, thus, stimulated phytoplankton growth, resulting in higher particulate matter concentrations of carbon, nitrogen and phosphorous.
    Schlagwort(e): Alkalinity, total; Ammonium; Ammonium molybdate reaction (FIASTAR 5000), (0.3 µm GF-75 prefiltered (Sterlitech)); BIBS; Bicarbonate ion; Bridging in Biodiversity Science; Calcium; Calcium carbonate; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, particulate; Carbon, organic, dissolved; Carbon, organic, particulate; Carbon, total, particulate; Carbonate ion; Carbon dioxide; Carbon dioxide, partial pressure; Chloride; Climate change; Climate driven Changes in Biodiversity of Microbiota; Conductivity, electrolytic; cyanobacteria; DATE/TIME; Day of experiment; DCM; DEPTH, water; Depth of Secchi Disk; Description; Difference derived from TPC and PIC; disturbance; ELTRA-800 (0.3 µm GF-75 filters (Sterlitech)); enclosure; Enclosure experiment; Flow-injection analyzer; Flow-injection analyzer (0.3 µm GF-75 prefiltered (Sterlitech)); Fugacity of carbon dioxide in seawater; Germany; High temperature combustion, infra-red detection (Shimadzu), (0.3 µm GF-75 prefiltered (Sterlitech)); Infralyt 50 (SAXON Junkalor GmbH), (0.3 µm GF-75 filters (Sterlitech)); Ion chromatography (Dionex), (0.3 µm GF-75 prefiltered (Sterlitech)); lake; Lake_Stechlin; Magnesium; mesocosm; Mesocosm label; Nitrate; Nitrite; Nitrogen, total; Nitrogen, total, particulate; Nitrogen, total dissolved; NITROLIMIT; Oxygen; Oxygen/Nitrogen ratio; Oxygen saturation; Oxygen sensor, YSI6560; PAR sensor Li-193SA, LI-COR Inc.; Peroxodisulfate oxidation method; Flow-injection analyzer; 0.3 µm GF-75 filters (Sterlitech); pH; Phosphorus, reactive soluble; Phosphorus, total; Phosphorus, total, particulate; Potassium; Pressure, technical; Radiation, photosynthetically active; SD; Secchi disk; Silicate, dissolved; Sodium; Stickstofflimitation in Binnengewässern; Sulfate; summer storm; TemBi; Temperature, air; Temperature, water; Titration; Treatment; Vaisala Weather station WXT520; water chemistry; water physics
    Materialart: Dataset
    Format: text/tab-separated-values, 10528 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...