GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Materials science.  (3)
  • Green chemistry.  (2)
  • Adhesives-Environmental aspects.  (1)
  • Grüne Chemie  (1)
  • Inorganic compounds-Analysis.  (1)
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Adhesives-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (300 pages)
    Edition: 1st ed.
    ISBN: 9781119655084
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Anti-Adhesive Coatings: A Technique for Prevention of Bacterial Surface Fouling -- 1.1 Bacterial Surface Fouling (Biofouling) -- 1.2 Negative Effects of Biofouling by Bacteria on Practical Applications -- 1.3 Anti-Adhesive Coatings for Preventing Bacterial Surface Fouling -- 1.3.1 Hydrophilic Polymers -- 1.3.2 Zwitterionic Polymers -- 1.3.3 Super-Hydrophobic Polymers -- 1.3.4 Slippery Liquid Infused Porous Surfaces (SLIPS) -- 1.3.5 Protein and Glycoprotein-Based Coatings -- 1.4 Bifunctional Coatings With Anti-Adhesive and Antibacterial Properties -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Lignin-Based Adhesives -- 2.1 Introduction -- 2.2 Native Lignin and Source of Technical Lignin -- 2.2.1 Native Lignin -- 2.2.2 Technical Lignins -- 2.3 Limitations of Technical Lignins -- 2.3.1 Heterogeneity of Technical Lignins -- 2.3.2 Reactivity of Technical Lignins -- 2.4 Lignin Pre-Treatment/Modification for Adhesive Application -- 2.4.1 Physical Pre-Treatment -- 2.4.2 Chemical Modification -- 2.5 Challenges and Prospects -- 2.6 Conclusions -- References -- Chapter 3 Green Adhesive for Industrial Applications -- 3.1 Introduction -- 3.2 Advanced Green Adhesives Categories- Industrial Applications -- 3.2.1 Keta Spire Poly Etherether Ketone Powder Coating -- 3.2.2 Bio-Inspired Adhesive in Robotics Field Application -- 3.2.3 Bio-Inspired Synthetic Adhesive in Space Application -- 3.2.3.1 Micro Structured Dry Adhesive Fabrication for Space Application -- 3.2.4 Natural Polymer Adhesive for Wood Panel Industry -- 3.2.5 Tannin Based Bio-Adhesive for Leather Tanning Industry -- 3.2.6 Conductive Adhesives in Microelectronics Industry -- 3.2.7 Bio-Resin Adhesive in Dental Industry -- 3.2.8 Green Adhesive in Fiberboard Industry -- 3.3 Conclusions and Future Scope. , References -- Chapter 4 Green Adhesives for Biomedical Applications -- 4.1 Introduction -- 4.2 Main Raw Materials of Green Adhesives: Structure, Composition, and Properties -- 4.2.1 Chitosan -- 4.2.2 Alginate -- 4.2.3 Lignin -- 4.2.4 Lactic Acid PLA -- 4.3 Properties Characterization of Green Adhesives for Biomedical Applications -- 4.3.1 Diffraction X-Rays (DRX) -- 4.3.2 Atomic Force Microscopy (AFM) -- 4.3.3 Scanning Electron Microscope (SEM Images) -- 4.3.4 Wettability or Contact Angle (CA) -- 4.3.5 Fourier Transform Infrared Spectroscopy (FTIR) -- 4.3.6 Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) -- 4.3.7 Thermal Analysis (TG/DTG/DTA and DSC Curves) -- 4.3.8 Surface Area and Porosimetry Analyzer (ASAP) -- 4.3.9 Mechanical Properties of Green Adhesives -- 4.4 Biomedical Applications of Natural Polymers -- 4.4.1 Alginate -- 4.4.1.1 Biomedical Applications of Alginate -- 4.4.2 Chitosan -- 4.4.2.1 Biomedical Applications of Chitosan -- 4.4.3 Lignin -- 4.4.3.1 Biomedical Applications of Lignin -- 4.4.4 Polylactide (PLA) -- 4.4.4.1 Biomedical Applications of PLA -- 4.5 Final Considerations -- Acknowledgements -- References -- Chapter 5 Waterborne Adhesives -- 5.1 Introduction -- 5.1.1 Motivation for the Use of Waterborne Adhesives -- 5.1.1.1 Sustainability and Environment Regulations -- 5.1.1.2 Circular Economy -- 5.1.1.3 Avoid Harmful Emissions -- 5.1.1.4 Development of Novel and Sustainable End Products -- 5.1.2 Environmental Effects and Mankind Toxicity Analysis -- 5.2 Performance of Waterborne Adhesives: An Overview -- 5.2.1 Waterborne Polyurethane (WBPU) Adhesives -- 5.2.1.1 Chemical Structure of Waterborne PU -- 5.2.1.2 Performances of WBPU Adhesives -- 5.2.2 Waterborne Epoxy Adhesive -- 5.3 Conclusions -- References -- Chapter 6 Using Polyfurfuryl Alcohol as Thermoset Adhesive/Sealant -- 6.1 Introduction. , 6.2 Furfuryl Alcohol as Adhesives -- 6.3 Polyfurfuryl Alcohol as Sealants -- 6.3.1 Effect of Different Parameters on the Curing of PFA-Based Sealants -- 6.4 Applications -- 6.5 Conclusions -- Acknowledgement -- References -- Chapter 7 Bioadhesives -- 7.1 Introduction -- 7.2 History of Bioadhesives -- 7.3 Classification of Bioadhesives -- 7.4 Mechanism of Bioadhesion -- 7.4.1 Mechanical Interlocking -- 7.4.2 Chain Entanglement -- 7.4.3 Intermolecular Bonding -- 7.4.4 Electrostatic Bonding -- 7.5 Testing of Bioadhesives -- 7.5.1 In Vitro Methods -- 7.5.1.1 Shear Stress Measurements -- 7.5.1.2 Peel Strength Evaluation -- 7.5.1.3 Flow Through Experiment and Plate Method -- 7.5.2 Ex Vitro Methods -- 7.5.2.1 Adhesion Weight Method -- 7.5.2.2 Fluorescent Probe Methods -- 7.5.2.3 Falling Liquid Film Method -- 7.6 Application of Bioadhesives -- 7.6.1 Bioadhesives as Drug Delivery Systems -- 7.6.2 Bioadhesives as Fibrin Sealants -- 7.6.3 Bioadhesives as Protein-Based Adhesives -- 7.6.4 Bioadhesives in Tissue Engineering -- 7.7 Conclusion -- References -- Chapter 8 Polysaccharide-Based Adhesives -- 8.1 Introduction -- 8.2 Cellulose-Derived Adhesive -- 8.2.1 Esterification -- 8.2.1.1 Cellulose Nitrate -- 8.2.1.2 Cellulose Acetate -- 8.2.1.3 Cellulose Acetate Butyrate -- 8.2.2 Etherification -- 8.2.2.1 Methyl Cellulose -- 8.2.2.2 Ethyl Cellulose -- 8.2.2.3 Carboxymethyl Cellulose -- 8.3 Starch-Derived Adhesives -- 8.3.1 Alkali Treatment -- 8.3.2 Acid Treatment -- 8.3.3 Heating -- 8.3.4 Oxidation -- 8.4 Natural Gums Derived-Adhesives -- 8.5 Fermentation-Based Adhesives -- 8.6 Enzyme Cross-Linked-Based Adhesives -- 8.7 Micro-Biopolysaccharide-Based Adhesives -- 8.8 Mechanism of Adhesion -- 8.9 Tests for Adhesion Strength -- 8.10 Applications -- 8.10.1 Biomedical Applications -- 8.10.2 Food Stuffs Applications -- 8.10.3 Pharmaceutical Applications. , 8.10.4 Agricultural Applications -- 8.10.5 Cigarette Manufacturing -- 8.10.6 Skin Cleansing Applications -- 8.11 Conclusion -- References -- Chapter 9 Wound Healing Adhesives -- 9.1 Introduction -- 9.2 Wound -- 9.2.1 Types of Wounds -- 9.2.1.1 Acute Wounds -- 9.2.1.2 Chronic Wounds -- 9.3 Structure and Function of the Skin -- 9.4 Mechanism of Wound Healing -- 9.5 Wound Closing Techniques -- 9.6 Wound Healing Adhesives -- 9.7 Types of Wound Healing Adhesives Based Upon Site of Application -- 9.7.1 External Use Wound Adhesives -- 9.7.1.1 Steps for Applying External Wound Healing Adhesives on Skin [30] -- 9.7.2 Internal Use Wound Adhesives -- 9.8 Types of Wound Healing Adhesives Based Upon Chemistry -- 9.8.1 Natural Wound Healing Adhesives -- 9.8.1.1 Fibrin Sealants/Fibrin-Based Tissue Adhesives -- 9.8.1.2 Albumin-Based Adhesives -- 9.8.1.3 Collagen and Gelatin-Based Wound Healing Adhesives -- 9.8.1.4 Starch -- 9.8.1.5 Chitosan -- 9.8.1.6 Dextran -- 9.8.2 Synthetic Wound Healing Adhesives -- 9.8.2.1 Cyanoacrylate -- 9.8.2.2 Poly Ethylene Glycol-Based Wound Adhesives (PEG) -- 9.8.2.3 Hydrogels -- 9.8.2.4 Polyurethane -- 9.9 Summary -- References -- Chapter 10 Green-Wood Flooring Adhesives -- 10.1 Introduction -- 10.2 Wood Flooring -- 10.2.1 Softwood Flooring -- 10.2.2 Hardwood Flooring -- 10.2.3 Engineered Wood Flooring -- 10.2.4 Laminate Flooring -- 10.2.5 Vinyl Flooring -- 10.2.6 Agricultural Residue Wood Flooring Panels -- 10.3 Recent Advances About Green Wood-Flooring Adhesives -- 10.3.1 Xylan -- 10.3.2 Modified Cassava Starch Bioadhesives -- 10.3.3 High-Efficiency Bioadhesive -- 10.3.4 Bioadhesive Made From Soy Protein and Polysaccharide -- 10.3.5 Green Cross-Linked Soy Protein Wood Flooring Adhesive -- 10.3.6 "Green" Bio-Thermoset Resins Derived From Soy Protein Isolate and Condensed Tannins. , 10.3.7 Development of Green Adhesives Using Tannins and Lignin for Fiberboard Manufacturing -- 10.3.8 Cottonseed Protein as Wood Adhesives -- 10.3.9 Chitosan as an Adhesive -- 10.3.10 PE-cg-MAH Green Wood Flooring Adhesive -- References -- Chapter 11 Synthetic Binders for Polymer Division -- List of Abbreviations -- 11.1 Introduction -- 11.2 Classification of Adhesives Based on Its Chemical Properties -- 11.2.1 Thermoset Adhesives -- 11.2.2 Thermoplastic Adhesives -- 11.2.3 Adhesive Blends -- 11.3 Adhesives Characteristics -- 11.4 Adhesives Classification Based on Its Function -- 11.4.1 Permanent Adhesives -- 11.4.2 Removable Adhesives -- 11.4.3 Repositionable Adhesives -- 11.4.4 Blended Adhesives -- 11.4.5 Anaerobic Adhesives -- 11.4.6 Aromatic Polymer Adhesives -- 11.4.7 Asphalt -- 11.4.8 Adhesives Based on Butyl Rubber -- 11.4.9 Cellulose Ester Adhesives -- 11.4.10 Adhesives Based on Cellulose Ether -- 11.4.11 Conductive Adhesives -- 11.4.12 Electrically Conductive Adhesive Materials -- 11.4.13 Thermally Conductive Adhesives -- 11.5 Resin -- 11.5.1 Unsaturated Polyester Resin -- 11.5.2 Monomers -- 11.5.2.1 Unsaturated Polyester -- 11.5.2.2 Alcohol Constituents -- 11.5.2.3 Constituents Like Anhydride and Acid -- 11.5.3 Vinyl Monomers of Unsaturated Polyester Resins -- 11.5.4 Styrenes -- 11.5.5 Acrylates and Methacrylates -- 11.5.6 Vinyl Ethers -- 11.5.7 Fillers -- 11.6 Polyurethanes -- 11.6.1 Monomers -- 11.6.1.1 Diisocyanates -- 11.6.1.2 Phosgene Route -- 11.6.1.3 Phosgene-Free Route -- 11.6.1.4 Polyols -- 11.6.1.5 Vinyl Functionalized Polyols -- 11.6.1.6 Polyols Based on Modified Polyurea -- 11.6.1.7 Polyols Based on Polyester -- 11.6.1.8 Acid and Alcohols-Based Polyesters -- 11.6.2 Rectorite Nanocomposites -- 11.6.3 Zeolite -- 11.7 Epoxy Resins -- 11.7.1 Monomers -- 11.7.1.1 Epoxides -- 11.7.1.2 Hyper Branched Polymers. , 11.7.2 Epoxide Resins Based on Liquid Crystalline Structure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (738 pages)
    Edition: 1st ed.
    ISBN: 9780128226704
    DDC: 547.2
    Language: English
    Note: Intro -- Green Sustainable Process for Chemical and Environmental Engineering and Science: Microwaves in Organic Synthesis -- Copyright -- Contents -- Contributors -- Chapter 1: Microwave catalysis in organic synthesis -- 1. Introduction -- 1.1. History -- 1.2. Early development in utilization of microwave heating for organic synthesis -- 2. Factors influencing microwave heating in organic reactions -- 2.1. Microwave heating mechanism -- 2.1.1. Dipolar polarization mechanism -- 2.1.2. Ionic conduction mechanism -- 2.2. Dielectric properties and loss tangent -- 2.3. Superheating effect -- 2.4. Interaction of microwaves with different materials -- 3. Comparison of microwave with conventional heating -- 4. Microwave-assisted catalytic organic reactions -- 4.1. Coupling reactions -- 4.1.1. Suzuki reaction (or Suzuki-Miyaura coupling) -- 4.1.2. Stille coupling reaction -- 4.1.3. Sonogashira coupling -- 4.1.4. Heck reaction -- 4.2. Microwave-assisted heterocyclic chemistry -- 4.2.1. Nitrogen-containing heterocycles -- 4.2.2. Oxygen-containing heterocycles -- 4.2.3. Sulfur-containing heterocycles -- 4.3. Multicomponent reactions -- 4.3.1. Hantzsch reaction -- 4.3.2. Ugi reaction -- 4.3.3. Biginelli reaction -- 4.3.4. Mannich reaction -- 4.3.5. Strecker reaction -- 4.4. Alkylation reactions -- 4.4.1. N-Alkylation -- 4.4.2. C-Alkylation -- 4.4.3. O-Alkylation -- 4.5. Esterification and transesterification reactions -- 5. Microwave reactors -- 6. Current challenges in microwave-assisted synthesis -- 6.1. Energy efficiency -- 6.2. Scale-up of microwave-assisted organic reactions -- 7. Conclusion -- References -- Chapter 2: Microwave-assisted CN formation reactions -- 1. Introduction -- 2. N-Arylations, N-alkylations, and related reactions -- 2.1. Palladium-catalyzed processes-Buchawald-Hartwig amination. , 2.2. Copper-catalyzed reactions-The Ullmann coupling -- 2.3. Application of other metal catalysts -- 2.4. Metal-free transformations -- 2.5. The Petasis borono-Mannich reaction -- 2.6. Three-component propargylations -- 3. Amidations -- 3.1. Direct amidations -- 3.2. Amidation by reacting esters and amines -- 3.3. Transamidations -- 3.4. Oxidative amidations -- 3.5. Miscellaneous processes -- 4. Ring-forming reactions -- 4.1. Rings with one nitrogen atom -- 4.1.1. Synthesis of three- and four-membered rings -- 4.1.2. Synthesis of five-membered rings -- 4.1.3. Six-membered and larger rings -- 4.1.4. Condensed rings: Indoles and structural isomers -- 4.1.5. Condensed rings: Quinolines and isoquinolines -- 4.1.6. Molecules with multiple rings -- 4.2. Ring systems with two nitrogen atoms -- 4.2.1. Synthesis of diazoles -- 4.2.2. Six-membered rings -- 4.2.3. Condensed rings -- 4.2.4. Molecules with multiple rings -- 4.3. Rings with three and four nitrogen atoms -- 4.3.1. Synthesis of azoles -- Synthesis of 1,2,3-triazoles -- Synthesis of 1,2,4-triazoles -- Synthesis of tetrazoles -- 4.3.2. Synthesis of triazines -- 4.3.3. Condensed bicyclic molecules -- 5. Polycyclic condensed ring systems with multiple nitrogen atoms -- 5.1. Molecules containing three nitrogen atoms -- 5.2. Ring systems with four and more nitrogens -- 6. Summary -- References -- Chapter 3: Microwave-assisted multicomponent reactions -- 1. Introduction -- 2. Three-component reactions -- 2.1. Mannich reaction -- 2.2. Betti reaction -- 2.3. Petasis reaction -- 2.4. Kabachnik-Fields reaction -- 2.5. A3-coupling reaction -- 2.6. Povarov reaction -- 2.7. Strecker reaction -- 2.8. Groebke-Blackburn-Bienaymé reaction -- 2.9. Passerini reaction -- 2.10. Pauson-Khand reaction -- 2.11. Kindler reaction -- 2.12. Gewald reaction -- 2.13. Bucherer-Bergs reaction -- 2.14. Biginelli reaction. , 3. Four-component reactions -- 3.1. Ugi reactions -- 3.2. Radziszewski reaction -- 3.3. Hantzsch dihydropyridine synthesis -- 3.4. Kröhnke reaction -- 4. Concluding remarks -- References -- Chapter 4: Catalytic, ultrasonic, and microwave-assisted synthesis of naphthoquinone derivatives by intermolecular and -- 1. Summary -- 2. Introduction -- 3. Synthesis of 2-anilino-1,4-naphthoquinone derivatives -- 4. Synthesis of 2,3-dianilino)-1,4-naphthoquinone derivatives -- 5. Synthesis of 2-anilino-5-hydroxy-1,4-naphthoquinone derivatives -- 6. Synthesis of indolo naphthoquinone derivatives -- 7. Conclusions -- References -- Chapter 5: Microwave-assisted condensation reactions -- 1. Introduction -- 2. Conceptual principles in microwave mechanism -- 3. Microwave-assisted condensation reactions -- 3.1. Microwave-assisted multicomponent condensation reaction -- 3.1.1. Multicomponent synthesis of aminopyrazolo[1,5-a][1,3,5]triazine-8-carboxylates -- 3.1.2. Multicomponent synthesis of 1,3,5,6-tetrasubstituted 2-pyridone -- 3.1.3. Multicomponent synthesis of functionalized steroidal pyridines -- 3.1.4. Multicomponent synthesis of indolyl-coumarin hybrids -- 3.1.5. Multicomponent synthesis of indole-1,3-dione derivatives -- 3.2. Microwave-assisted Knoevenagel condensation reaction -- 3.2.1. Knoevenagel synthetic approach to ethyl 2-cyano-3-phenylacrylate derivatives -- 3.2.2. Knoevenagel synthetic approach to Indole-based Heterocycles -- 3.2.3. Knoevenagel synthetic approach to tetrahydrochromeno[3,4-c]chromen-1(2H)-ones -- 3.2.4. Knoevenagel synthetic approach to pyran-based chalcones -- 3.2.5. Knoevenagel synthetic approach to 3-acetylcoumarin and chalcone affiliates -- 3.2.6. Knoevenagel synthetic approach to 2,3-dihydropyran[2,3-c]pyrazoles -- 3.3. Microwave-assisted aldol condensation reaction -- 3.3.1. Aldol-type synthetic approach to 3-acetyl isocoumarin. , 3.3.2. Aldol-type synthetic approach to aza-fused isoquinoline motifs -- 3.3.3. Aldol-type synthetic approach to dibenzylidenecyclohexanones -- 3.3.4. Aldol-type synthetic approach to dibenzylidenecyclopentanone -- 3.3.5. Aldol-type synthetic approach to 2-benzylideneoctanal -- 3.4. Microwave-assisted Pechmann condensation reaction -- 3.4.1. Amberlyst-15 catalyzed synthetic approach to 4-methylcoumarin -- 3.4.2. Zn [(l)-proline]2 catalyzed synthetic approach to tricyclic 4-methylcoumarin -- 3.4.3. FeF3 catalyzed synthetic approach to 4,7-dimethyl-2H-chromen-2-one -- 3.4.4. Pechmann condensation reaction for synthesis of umbelliferone -- 3.4.5. Microwave-assisted synthesis via two different naphthalenediol -- 3.4.6. ZnCl2 catalyzed synthesis of linear pyranodihydrocoumarin -- 3.5. Microwave-assisted Mannich condensation reaction -- 3.5.1. Mannich synthetic approach to nitrothiazolo[3,2-c]pyrimidines -- 3.5.2. Mannich synthetic approach to 4-hydroxyacetophenone derivatives -- 3.5.3. Mannich synthetic approach to barbituric acid derivatives -- 3.5.4. Mannich synthetic approach to polymethoxychalcone -- 3.6. Other miscellaneous microwave-assisted condensation products -- 4. Conclusion -- References -- Chapter 6: Microwave-assisted oxidation reactions -- 1. Introduction -- 2. C-oxidation -- 2.1. Oxidation of hydrocarbons -- 2.1.1. Oxidation of sp3 hybridized carbons -- Alkane to aldehyde (RCH3RCOH) -- Alkane to glyoxal (RCOCH3RCOCOH) -- Alkane to acid (RCH3RCOOH) -- Alkane to ketone (RCH2RRCOR) -- Cyclic ethers to esters (RCH2ORRCOOR) -- 2.1.2. Oxidation of sp2 hybridized carbons -- Alkene to aldehyde (RCHCHRRCOH) -- 2.1.3. Oxidation of sp hybridized carbons -- Alkyne to glyoxal (RCCHRCOCOH) -- 2.2. Oxidation of alcohols -- 2.2.1. Alcohol to aldehyde (RCH2OHRCOH) -- 2.2.2. Clayfen -- 2.2.3. Cetyltrimethylammonium bromochromate (CTMABC) -- 2.2.4. Magtrieve. , 2.2.5. Zeolite A -- 2.3. Oxidation of aldehyde -- 2.3.1. Aldehyde to acid (RCHORCOOH) -- 2.3.2. Aldehyde to ester (RCHORCOOR1 -- R1 from solvent) -- 2.4. Oxidation of halides -- 2.4.1. Halides to aldehydes (RCH2XRCOH) -- 2.5. Oxidative cyclization -- 2.6. Oxidative aromatization -- 2.7. Oxidative amination -- 2.8. Advancements in named oxidation reactions -- 2.8.1. Baeyer-Villiger oxidation -- 2.8.2. Dess-Martin periodinane reaction -- 2.8.3. Fetizon/Fetison oxidation -- 2.8.4. Jacobsen epoxidation -- 2.8.5. Jones/chromium based oxidation -- 2.8.6. Kornblum oxidation -- 2.8.7. Noyori oxidation -- 2.8.8. Sharpless epoxidation -- Other oxidation reactions -- 3. N-oxidations -- 3.1. N-oxide formation -- 3.2. Amines to imines -- 4. S-oxidations -- 4.1. Sulfides to sulfoxides -- 4.2. Thiols to disulfides -- References -- Chapter 7: Microwave-assisted reduction reactions -- 1. Introduction -- 1.1. Fundamental aspects of microwave radiation -- 1.2. Microwave apparatus -- 1.3. Advantages and disadvantages of microwave irradiation -- 2. Microwave-assisted organic reduction reactions -- 3. Microwave-assisted reduction for the development of inorganic raw materials -- 4. Microwave-assisted reduction for production composites -- 5. Microwave-assisted reduction for nanoparticle synthesis -- 6. Microwave-assisted reduction for catalyst purpose -- 7. Conclusion -- References -- Chapter 8: Microwave-assisted stereoselective organic synthesis -- 1. Introduction -- 2. Microwave-assisted diastereoselective and enantioselective reactions -- 3. Microwave-assisted diastereoselective organic transformation reactions -- 4. Microwave-assisted enantioselective organic transformation reactions -- 5. Conclusion -- References -- Chapter 9: Microwave-assisted heterocyclics -- 1. Introduction -- 2. Microwave-promoted synthesis of heterocyclic compounds. , 2.1. Synthesis of tetrazole-based heterocycles.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Inorganic compounds-Analysis. ; Electronic books.
    Description / Table of Contents: This is the very first book on the highly promising topic of MXenes; focusing on their fundamental characteristics and properties, fabrication techniques and applications. Keywords: MXenes, Nanomaterials, Two-dimensional Materials, Transition Metal Carbides, Transition Metal Nitrides, Electrical Conductivity, Hydrophilicity, Chemical Stability, Catalysis, Membrane Separation, Supercapacitors, Hybrid-ion Capacitors, Batteries, Flexible electronics, Hydrogen Storage, Nanoelectronics, Sensors, Energy R&D, Environmental Applications, Electronic Devices, Biomedical Applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (224 pages)
    Edition: 1st ed.
    ISBN: 9781644900253
    Series Statement: Materials Research Foundations Series ; v.51
    DDC: 543.0858
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- MXenes for Sensors -- 1. Introduction -- 2. Synthesis of MXenes -- 3. MXenes for sensing applications -- 3.1 Electronic sensors -- 3.2 Biosensing -- 4. Characterization -- 5. Final Remarks -- Acknowledgements -- References -- 2 -- A Newly Emerging MXene Nanomaterial for Environmental Applications -- 1. Introduction -- 2. Physiochemical properties of MXenes nanomaterials -- 2.1 Crystal structure -- 2.1.2 Surface chemical structure -- 2.1.3 Band gap structure -- 2.2 Synthesis of MXenes nanomaterials -- 3. MXenes for environmental application -- 3.1 Adsorption -- 3.1.1 Adsorption of organic pollutants -- 3.1.2 Adsorption of inorganic pollutants -- 3.1.3 Adsorption of gaseous pollutants -- 3.1.4 Adsorption of other pollutants -- 3.2 Photocatalysis -- 3.3 Antimicrobial activity -- 3.4 Membrane filtration -- Conclusion and remarks -- Acknowledgments -- References -- 3 -- Two-Dimensional MXene as a Promising Material for Hydrogen Storage -- 1. Introduction -- 2. Family of Mxenes -- 3. Structural properties of Mxenes -- 4. Preparation of Mxenes -- 5. Mxenes for hydrogen storage -- 6. Computational and theoretical study on hydrogen storage over MXenes -- 7. Experimental study of Mxenes -- Conclusion -- Acknowledgments -- References -- 4 -- MXenes for Electrocatalysis -- 1. Introduction -- 2. MXenes forHER -- 2.1 The mechanism of HER -- 2.2 MXene-based catalysts for HER -- 3. MXene for OER -- 3.1 The mechanism of OER -- 3.2 MXene-based catalysts for OER -- 4. MXene for NRR -- 4.1 The mechanism of NRR -- 4.2 MXene-based catalysts for NRR -- Conclusion and outlook -- References -- 5 -- MXenes Composites -- 1. Introduction -- 2. Significance of MXenes composites -- 3. MAX phases in MXenes -- 4. Processing of MXene composites -- 4.1 Synthesis of MXenes -- 4.2 Surface modifications. , 5. Structural and mechanical properties -- 6. Electronic properties -- 7. Surface state properties -- 8. Transport and optical properties -- 9. Magnetic properties -- 10. Applications of MXenes in different fields -- 10.1 Low work function emitters -- 10.2 Catalysts and photocatalysts for hydrogen evolution -- 10.3 Energy conversion for thermoelectric devices -- 10.4 Energy storage -- 10.5 Biomedical applications -- Conclusions -- References -- 6 -- MXenes for Supercapacitors -- 1. Introduction -- 2. Supercapacitor background -- 3. Synthesis approaches -- 3.1 MXene -- 3.2 Element doped MXenes -- 3.3 MXene-based nanocomposites -- 3.4 MXene quantum dots -- 4. Structures, properties and supercapacitor applications -- 4.1 Single/few-layered MXene-based supercapacitors -- 4.2 Element doped MXenes -- 4.3 MXene composites-based supercapacitors -- Summary and outlook -- References -- 7 -- MXenes for Sodium-Ion Batteries -- 1. Introduction -- 2. Na-ion batteries -- 3. Summary -- References -- 8 -- MXenes for Biomedical Applications -- 1. Introduction -- 2. MXenes as antibacterial agent -- 3. MXenes as biosensors -- 4. MXenes in bio-imaging -- 5. Therapeutic applications of MXenes -- Discussion -- References -- 9 -- MXene and its Sensing Applications -- 1. Introduction -- 2. MXenes based sensors -- 2.1 MXene for electrochemical (bio) sensing -- 2.2 MXenes for optical sensing -- 2.3 MXene for gas sensing -- 2.4 MXene for piezoresistive sensing -- Conclusion -- Abbreviations -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Engineering. ; Environment. ; Materials science. ; Energy. ; Chemistry.
    Description / Table of Contents: Waterborne Polyurethanes for Corrosion Protection -- Waterborne Polyurethane-Polyacrylate Hybrids -- Applications of Cationic Waterborne Polyurethanes -- Waterborne polyurethanes additive technologies -- Waterborne Polyurethanes in Sustainability Development -- Properties and characterization techniques for waterborne polyurethanes -- Novel research areas of applications for waterborne polyurethanes -- Applications of Polymeric Materials in Biomedical Engineering -- Applications Of Waterborne Polyurethanes Foams -- Waterborne polyurethane-metal oxide nanocomposite applications -- Waterborne polyurethanes for biomedical applications -- Biomedical and environmental applications of waterborne polyurethane-metal oxide nanocomposites.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(V, 192 p. 92 illus., 69 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030728694
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Chemistry. ; Environment. ; Engineering. ; Materials science.
    Description / Table of Contents: Chemical valorization of CO2 -- Progress in Catalysts for CO2 reforming -- Fuel Generation From Co2 -- Thermodynamics of CO2 conversion -- Enzymatic CO2 Conversion -- Electrochemical CO2 conversion -- Supercritical carbon dioxide mediated organic transformations -- Theoretical approaches to CO2 transformations -- Carbon Dioxide Conversion Methods -- Closing the carbon cycle -- Carbon Dioxide Utilization To Energy And Fuel -- Ethylenediamine-Carbonic Anhydrase Complex For Co2 Sequestration -- GREEN PATHWAY OF CO2 CAPTURE -- Carbon-derivatives from CO2 -- Catalysis for CO2 Conversion; Perovskite based catalysts -- Thermodynamics of CO2 conversion -- Carbon dioxide based green solvents -- State-of-the-art overview of CO2 conversions.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 353 p. 204 illus., 134 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Chemistry. ; Engineering. ; Environment. ; Materials science. ; Aufsatzsammlung ; Grüne Chemie
    Description / Table of Contents: Biomass-derived polyurethanes for sustainable future -- Mechanochemistry: a power tool for green synthesis -- Future trends in green synthesis -- Green synthesis of hierarchically structured metal and metal oxide nanomaterials -- Bioprivileged molecules -- Application of membrane in reaction engineering for green synthesis -- Photoenzymatic green synthesis -- Biomass derived carbons and their energy applications.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 301 p. 259 illus., 83 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...