GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1H NMR spectroscopy; Acetate, per wet mass; Adenosine diphosphate, per wet mass; Adenosine monophosphate, per wet mass; Adenosine triphosphate, per wet mass; Alanine; Anserine; Arginine; Asparagine; Aspartic acid; Asterias_rubens_2018; Baltic Sea, Eckernförde Bay; Baltic Sea, Kattegat; BD; beta-Alanine; Betaine; Bromide; Calcium; Calculated average/mean values; Carnitine; cellular volume regulation; Chloride; Choline; Climate change; Creatine; Creatinephosphate; Creatinine; Date/time end, experiment; Date/time start, experiment; Diadumene_lineata_2018; Dimethylamine; Dimethylsulfone; Dredge, benthos; Event label; Flame photometry; Fluoride; Freeze-depression osmometer, Gonotec, Osmomat 030; Glutamic acid; Glutamine; Glycine; HAND; Histamine; Homarine 5; Homocysteine; Homoserine; Hydroxyacetone; Hypotaurine; Individual code; Inosine; invertebrates; Ion chromatography; Isoleucine; Kieler Bucht; Laboratory experiment; Lactate, per wet mass; L-Arginine; Leucine; Littorina_littorea_2018; Lysine; Malonate; Medium; Metabolite, unassigned; Methylamine; Methylmalonate; Mytilus_edulis_2018; Nitrate; N-Methylhydantoin; O-Acetylcholine; O-Phosphocholine; Ornithine; osmoconformer; Osmolality; osmolytes; osmoregulation; Phenylalanine; Phosphate; pi-Methylhistidine; Potassium; Proline; Psammechinus_miliaris_2018; salinity tolerance; Sampling by hand; Sarcosine; Serine; sn-Glycero-3-phosphocholine; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strongylocentrotus_droebachiensis_2018; Succinate, per wet mass; Sulfate; Tank number; tau-Methylhistidine; Taurine; Temperature, water; Threonine; Treatment: salinity; Trimethylamine N-oxide; Tryptophan; Type of study; Tyrosine; Valine; VID; Visual identification  (1)
  • Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study  (1)
  • Alkalinity, total; Animalia; Aragonite saturation state; Argopecten irradians; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mollusca; Mya arenaria; Not applicable; Number of measurements; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Single species; Species; Temperate; Temperature, water; Δ47 Carbon dioxide; Δ47 Carbon dioxide, standard error; δ13C; δ18O  (1)
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2023-11-08
    Description: Laboratory experiments were conducted in the climate chambers at GEOMAR Helmholtz Centre for Ocean Research Kiel in the time between March and November 2018. Experiments were designed to study the effect of long-term (1 month) exposure to low salinity in osmoconforming invertebrates. The study organisms (Asterias rubens, Mytilus edulis, Littorina littorea, Diadumene lineata, Strongylocentrotus droebachiensis and Psammechinus milliaris) were collected in Kiel Fjord, Eckernförder Bight or the Kattegat from spring to autumn 2018. Organisms were acclimated to climate chamber conditions for 1 week (under habitat salinity, 14˚C, constant aeration) and then subjected to salinity acclimation for 1-2 weeks until the final salinity treatment level was reached. Then different salinity treatments were maintained for 4 weeks. Water physiochemistry (temperature, salinity, pH, nitrite, nitrate, phosphate) was recorded frequently. After the experiment, samples were taken from tissues to measure total osmolality (mosmol/kg) with an osmomat, and inorganic ions (mmol/kg or µmol/g wet mass). Anions were measured with a novel protocol via ion chromatography, cations were measured via flame photometry. Organic osmolytes were measured via 1H-NMR.
    Keywords: 1H NMR spectroscopy; Acetate, per wet mass; Adenosine diphosphate, per wet mass; Adenosine monophosphate, per wet mass; Adenosine triphosphate, per wet mass; Alanine; Anserine; Arginine; Asparagine; Aspartic acid; Asterias_rubens_2018; Baltic Sea, Eckernförde Bay; Baltic Sea, Kattegat; BD; beta-Alanine; Betaine; Bromide; Calcium; Calculated average/mean values; Carnitine; cellular volume regulation; Chloride; Choline; Climate change; Creatine; Creatinephosphate; Creatinine; Date/time end, experiment; Date/time start, experiment; Diadumene_lineata_2018; Dimethylamine; Dimethylsulfone; Dredge, benthos; Event label; Flame photometry; Fluoride; Freeze-depression osmometer, Gonotec, Osmomat 030; Glutamic acid; Glutamine; Glycine; HAND; Histamine; Homarine 5; Homocysteine; Homoserine; Hydroxyacetone; Hypotaurine; Individual code; Inosine; invertebrates; Ion chromatography; Isoleucine; Kieler Bucht; Laboratory experiment; Lactate, per wet mass; L-Arginine; Leucine; Littorina_littorea_2018; Lysine; Malonate; Medium; Metabolite, unassigned; Methylamine; Methylmalonate; Mytilus_edulis_2018; Nitrate; N-Methylhydantoin; O-Acetylcholine; O-Phosphocholine; Ornithine; osmoconformer; Osmolality; osmolytes; osmoregulation; Phenylalanine; Phosphate; pi-Methylhistidine; Potassium; Proline; Psammechinus_miliaris_2018; salinity tolerance; Sampling by hand; Sarcosine; Serine; sn-Glycero-3-phosphocholine; Sodium; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strongylocentrotus_droebachiensis_2018; Succinate, per wet mass; Sulfate; Tank number; tau-Methylhistidine; Taurine; Temperature, water; Threonine; Treatment: salinity; Trimethylamine N-oxide; Tryptophan; Type of study; Tyrosine; Valine; VID; Visual identification
    Type: Dataset
    Format: text/tab-separated-values, 5452 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Eagle, R A; Eiler, J M; Tripati, Aradhna K; Ries, Justin B; Freitas, P S; Hiebenthal, Claas; Wanamaker, Alan D; Taviani, Marco; Elliot, Mary; Marenssi, Sergio; Nakamura, K; Ramirez, P; Roy, K (2013): The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences, 10(7), 4591-4606, https://doi.org/10.5194/bg-10-4591-2013
    Publication Date: 2024-03-15
    Description: The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk delta 18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C-18O bond abundance, denoted by the measured parameter Delta 47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of -1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Delta 47 and growth temperature. We also find that the slope of a linear regression through all the Delta 47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Delta 47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Delta 47-temperature relationships between calcitic and aragonitic taxa.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Argopecten irradians; Benthic animals; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mollusca; Mya arenaria; Not applicable; Number of measurements; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Salinity; Single species; Species; Temperate; Temperature, water; Δ47 Carbon dioxide; Δ47 Carbon dioxide, standard error; δ13C; δ18O
    Type: Dataset
    Format: text/tab-separated-values, 200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Keywords: Abundance change; Alkalinity, total; Aragonite saturation state; Asterias rubens; Asterias rubens, survival; Balanus improvisus; Balanus improvisus, plate, growth rate; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Entire community; Experiment; Fucus vesiculosus; Fucus vesiculosus, length, growth rate; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; Mortality/Survival; Mytilus edulis; Mytilus edulis, shell length, growth rate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Replicate; Rocky-shore community; Salinity; Season; Temperate; Temperature; Temperature, water; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1200 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...