GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    In: Oceanography, Rockville, MD : The Oceanography Society, 1988, 22(2009), 1, Seite 58-74, 2377-617X
    In: volume:22
    In: year:2009
    In: number:1
    In: pages:58-74
    Description / Table of Contents: White coral communities consist of scleractinian corals that thrive in the ocean’s bathyal depths (~ 2004000 m). In the Atlantic Ocean, white corals are known to form complex, three-dimensional structures on the seabed that attract vast amounts of other organisms, accumulate suspended detritus, and influence the local hydrodynamic flow field. These attributes coincide with what we generally describe as a coral reef. With time, environmental change causes decline of the framework-constructing corals; this is followed by erosion of the reef sequence or its draping with noncoral-related deposits. After several such sequences, the structures are known as coral carbonate mounds, which can grow as high as 350 m. Both bathyal white coral reefs and mounds are widely distributed in the Atlantic Ocean and adjacent marginal seas, such as the Gulf of Mexico. The Mediterranean Sea, however, known for its richness of fossil white coral communities exposed in land outcrops, harbors very few extant coral communities. The HERMES project extended its study sites deep into the Mediterranean with state-of-the-art mapping and visualization technology. By doing so, many previously unknown coral sites were discovered during inspections of Mediterranean narrow shelves, canyon walls, escarpments, and seamounts by remotely operated vehicles. Such shelf and continental margin settings are characteristic of the dynamic margins of the Mediterranean Sea and contrast significantly with the much broader shelves of the Atlantic Ocean. This paper reports on a HERMES cruise that was dedicated to exploring these rough submarine topographies in search of white coral communities in the central Mediterranean, and re-evaluates the general perception of the assumed paucity of white corals in this sea.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 2377-617X
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Terra nova 15 (2003), S. 0 
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Calcarenitic bodies punctuate the shallow-water deposits of Plio-Pleistocene Mediterranean basins. Their rhythmic stacking pattern and stratigraphic distribution suggest a close relationship with deep-water sapropel cycles, whose development is controlled by periodic changes in the Earth's orbital parameters. Calcarenitic bodies occur as eccentricity-controlled clusters (over periods of 100–400 kyr) showing a time-correlation with sapropel clusters, starting from 3.1 Ma. Formation of individual calcarenites is possibly driven by obliquity and/or precession cyclicity. This has important implications both for an improved understanding of Mediterranean palaeoceanographic events and correlation of shallow- and deep-water successions. The appearance of sapropel and calcarenitic clusters starting from 3.1 Ma suggests a direct link with the onset of Northern Hemisphere glaciation, which could be responsible for the amplification of oceanographic events within the Mediterranean.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-29
    Description: The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high δ11B compositions ranging from 23.2‰ to 28.7‰. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pHcf), being elevated by ∼0.6–0.8 units (ΔpH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower δ11B composition of 15.5‰, with a corresponding lower ΔpH value of ∼0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pHT and shows an approximate linear correlation with ΔpHDesmo = 6.43 − 0.71pHT (r2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where ΔpHDesmo = 1.09 − 0.14Ωarag (r2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pHcf, and consequently Ωcf, of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+-ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (δ11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium. We also show that the relatively strong up-regulation of pH and consequent elevation of the internal carbonate saturation state (Ωcf ∼8.5 to ∼13) at the site of calcification by cold-water corals, facilitates calcification at or in some cases below the aragonite saturation horizon, providing a greater ability to adapt to the already low and now decreasing carbonate ion concentrations. Although providing greater resilience to the effects of ocean acidification and enhancing rates of calcification with increasing temperature, the process of internal pHcf up-regulation has an associated energetic cost, and therefore growth-rate cost, of ∼10% per 0.1 pH unit decrease in seawater pHT. Furthermore, as the aragonite saturation horizon shoals with rapidly increasing pCO2 and Ωarag 〈 1, increased dissolution of the exposed skeleton will ultimately limit their survival in the deep oceans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  In: Landscapes and Landforms of the Maltese Islands. , ed. by Gauci, R. and Schembri, J. Springer, Cham, Switzerland, pp. 117-128.
    Publication Date: 2020-01-09
    Description: The application of acoustic techniques, such as multibeam echosounders, has permitted the identification of Maltese submarine landscapes and landforms that were progressively inundated during the postglacial sea-level rise. Remarkably, geomorphological features due to fluvial, gravity-induced and karst processes that took place under former subaerial conditions can be clearly recognised on the present seafloor around the Maltese archipelago, and they were only slightly modified by sea action during the postglacial transgression phases. The analysis of the submerged landforms described in this chapter is crucial for understanding the evolution of the Maltese Islands during the last ca. 20,000 years.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-19
    Description: This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-22
    Description: We show that the Li/Mg systematics of a large suite of aragonitic coral skeletons, representing a wide range of species inhabiting disparate environments, provides a robust proxy for ambient seawater temperature. The corals encompass both zooxanthellate and azooxanthellate species (Acropora sp., Porites sp., Cladocora caespitosa, Lophelia pertusa, Madrepora oculata and Flabellum impensum) collected from shallow, intermediate, and deep-water habitats, as well as specimens cultured in tanks under temperature-controlled conditions. The Li/Mg ratios observed in corals from these diverse tropical, temperate, and deep-water environments are shown to be highly correlated with temperature, giving an exponential temperature relationship of: Li/Mg (mmol/mol) = 5.41 exp (−0.049 * T) (r2 = 0.975, n = 49). Based on the standard error of the Li/Mg versus temperature correlation, we obtain a typical precision of ±0.9 °C for the wide range of species analysed, similar or better than that of other less robust coral temperature proxies such as Sr/Ca ratios. The robustness and species independent character of the Li/Mg temperature proxy is shown to be the result of the normalization of Li to Mg, effectively eliminating the precipitation efficiency component such that temperature remains as the main controller of coral Li/Mg compositions. This is inferred from analysis of corresponding Li/Ca and Mg/Ca ratios with both ratios showing strong microstructure-related co-variations between the fibrous aragonite and centres of calcification, a characteristic that we attribute to varying physiological controls on growth rate. Furthermore, Li/Ca ratios show an offset between more rapidly growing zooxanthellate and azooxanthellate corals, and hence only an approximately inverse relationship to seawater temperature. Mg/Ca ratios show very strong physiological controls on growth rate but no significant dependence with temperature, except possibly for Acropora sp. and Porites sp. A strong positive correlation is nevertheless found between Li/Ca and Mg/Ca ratios at similar temperatures, indicating that both Li and Mg are subject to control by similar growth mechanisms, specifically the mass fraction of aragonite precipitated during calcification, which is shown to be consistent with a Rayleigh-based elemental fractionation model. The highly coherent array defined by Li/Mg versus temperature is thus largely independent of coral calcification mechanisms, with the strong temperature dependence reflecting the greater sensitivity of the KdLi/Ca partition coefficient relative to KdMg/Ca. Accordingly, Li/Mg ratios exhibit a highly coherent exponential correlation with temperature, thereby providing a more robust tool for reconstructing paleo-seawater temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-09
    Description: Carbonates are widespread at methane and petroleum seeps and are often precipitated as consequence of an alkalinity increase due to the anaerobic oxidation of methane (AOM) or, less often reported, of higher hydrocarbons. These carbonates are taphonomic windows into Earth's history, because they excellently protect the in situ formed microbial signatures (e.g. lipid biomarkers) from diagenetic destruction. A complication for paleoreconstructions, however, is that seep carbonates also encapsulate variable amounts of allochthonous organic matter, sometimes even completely obscuring authigenic microbial signatures. Seep carbonates from the Holocene Black Sea, the Pleistocene Enza River and the Pliocene San Lorenzo (both Northern Apennines, Italy) provide hints to better understand (i) the importance of processes other than AOM for the formation of seep carbonates and (ii) the controls of allochthonous and autochthonous contribution of biomarkers to organic matter in seep carbonates. Biomarker distributions in different parts of a Black Sea carbonate clearly demonstrate that high allochthonous organic matter is entrapped if AOM carbonates are formed intrasedimentary, particularly if methane supply is relatively low and external organic matter input high. High allochthonous contributions were also found in the biomarker inventory of ancient seep carbonates from the Italian Northern Apennines (Enza River and San Lorenzo) pointing at their precipitation within the sediment. Specific and complex conditions were indicated from our data for the Enza River location. Carbonate facies and particularly biomarker compositions, with abundant signatures of sulfate reducing bacteria, suggest that sulfate reduction using alkaline, and eventually sulfate- and higher hydrocarbon-enriched fluids triggered the growth of these seep carbonates. Our and other data suggest that this process has to be more considered if interpreting seep settings, particularly where microbial processes rely on rising fluids from deep petroleum reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The neodymium isotopic composition (εNd) of seawater is one of the most important geochemical tracers to investigate water mass provenance, which can also serve as a proxy to reconstruct past variations in ocean circulation. Nd isotopes have recently also been used to reconstruct past circulation changes in the Mediterranean Sea on different time scales. However, the modern seawater εNd dataset for the Mediterranean Sea, which these reconstructions are based on, is limited and up to now only 160 isotopic measurements are available for the entire basin. The lack of present-day data also limits our understanding of the processes controlling the Nd cycle and Nd isotopic distribution in this semi-enclosed basin. Here we present new εNd data from 24 depth profiles covering all Mediterranean sub-basins, which significantly increases the available dataset in the Mediterranean Sea. The main goal of our study is to better characterize the relationship between the dissolved Nd isotope distributions and major water masses in the Mediterranean Sea and to investigate the impact and relative importance of local non-conservative modifications, which include input of riverine particles and waters, aeolian-derived material and exchange with the sediments at continental margins. This comprehensive εNd dataset reveals a clear εNd – salinity correlation and a zonal and depth gradient with εNd systematically increasing from the western to the eastern Mediterranean basin (average εNd = −8.8 ± 0.8 and −6.7 ± 1 for the entire water column, respectively), reflecting the large-scale basin circulation. We have evaluated the conservative εNd behaviour in the Mediterranean Sea and quantified the non-conservative components of the εNd signatures by applying an Optimum Multiparameter (OMP) analysis and results from the Parametric Optimum Multiparameter (POMP) analysis of Jullion et al. (2017). The results of the present study combined with previously published Nd isotope values indicate that dissolved εNd behaves overall conservatively in the open Mediterranean Sea and show that its water masses are clearly distinguishable by their Nd isotope signature. However, misfits between measured and OMP- and POMP-derived εNd values exist in almost all sub-basins, especially in the eastern Levantine Basin and Alboran Sea at intermediate-deep depths, which can be explained by the influence of detrital lithogenic εNd signatures through interaction with highly radiogenic Nile sourced volcanic fractions and unradiogenic sediments, respectively. The radiogenic signature acquired in the eastern Levantine Basin is carried by the Levantine Intermediate Water and transferred conservatively to the entire Mediterranean at intermediate depths. Our measured εNd values and OMP- and POMP-derived results indicate that non-conservative contributions originating from sediment sources are then propagated by water mass circulation (with distinct preformed εNd) along the Mediterranean Sea through advection and conservative mixing. Mediterranean εNd effectively traces the mixing between the different water masses in this semi-enclosed basin and is a suitable water mass tracer.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-11-01
    Description: The Mediterranean area is the locus of a variety of deep-sea chemosynthetic environments that have been exploited by bivalves of the family Solemyidae during Cenozoic to present time. Large solemyids represented by the Solemya doderleini group were widely distributed in Neogene deep-sea reducing habitats, including cold vent hydrocarbon sites. Based upon the diagnostic structure of the ligament, Solemya doderleini (Mayer), 1861 and S. subquadrata (Foresti), 1879 are moved to the genus Acharax Dall, 1908. After the Messinian Salinity Crisis Acharax doderleini re-colonized deep-sea sulphide environments up to the Pliocene at least. At present, Acharax occurs in similar settings in the adjacent eastern Atlantic Ocean. Thus far, large solemyids are not documented from the present deep Mediterranean Sea in spite of a vast number of seep and reducing habitats with chemosynthetic biota, especially concentrated in its Eastern basin. Promisingly, however, a single live juvenile specimen of Solemyidae has been recently found at bathyal depth associated with a pockmark in the Nile Deep Sea Fan.
    Print ISSN: 0022-3360
    Electronic ISSN: 1937-2337
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...