GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Ecologists must understand how marine life responds to changing local conditions, rather than to overall global temperature rise, say Amanda E. Bates and 16 colleagues.
    Type: Article , PeerReviewed
    Format: text
    Format: audio
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Rapid adaptation to novel biotic interactions and abiotic factors in introduced ranges can be critical to invasion success of both exotic terrestrial and aquatic plants. Seaweeds are extremely successful biological invaders in marine environments. Along with herbivores, foulers − ubiquitous enemies in the marine environment − have the potential to determine the success or failure of invasive seaweeds. However, research on the topic of rapid adaptation of seaweeds to biotic challenges is still in its nascent stages and rapid adaptation of seaweeds to fouling is unexplored. We tested whether the impressive invasion success of the red macroalga Gracilaria vermiculophylla may be enhanced by the rapid adaptation of chemical control (defence) of new bacterial epibionts in the invaded range. The native and invasive G. vermiculophylla populations investigated were equally well defended against currently co-occurring bacterial epibionts isolated from their respective ranges. In contrast, the native populations were weakly defended against bacterial epibionts from the invaded range, whereas the invasive populations were weakly defended against bacterial epibionts from their native range. Apparently during the invasion process, invasive populations have adapted their control capacity to cope with the new epibionts but have lost the capacity to fend off old epibionts. Synthesis. These results provide the first evidence that a change in habitat and, thus, confrontation by new enemies, may trigger rapid defence adaptation of seaweeds, which could be necessary for invasiveness. Such adaptation dynamics as found in the current study could be also applicable to other types of host plant – enemy interaction e.g. plant root – microbe interactions, freshwater plant – fouler interactions in general and for cases of shifting plant – enemy interactions in course of climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15°C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Summary: Environmental stress can influence species traits and performance considerably. Using a seaweed-snail system from NW (Nova Scotia) and NE (Helgoland) Atlantic rocky shores, we examined how physical stress (wave exposure) modulates traits in the seaweed Fucus vesiculosus and indirectly in its main consumer, the periwinkle Littorina obtusata. In both regions, algal tissue toughness increased with wave exposure. Reciprocal-transplant experiments showed that tissue toughness adjusted plastically to the prevailing level of wave exposure. Choice experiments tested the feeding preference of snails from sheltered, exposed and very exposed habitats for algae from such wave exposures. Snails from exposed and very exposed habitats consumed algal tissues at similar rates irrespective of the exposure of origin of the algae. However, snails from sheltered habitats consumed less algal tissues from very exposed habitats than tissues from sheltered and exposed habitats. Choice assays using reconstituted algal food (triturated during preparation) identified high thallus toughness as the explanation for the low preference of snails from sheltered habitats for algae from very exposed habitats. Ultrastructural analyses of radulae indicated that rachidian teeth were longest and the number of cusps in lateral teeth (grazing-relevant traits) was highest in snails from very exposed habitats, suggesting that radulae are best suited to rupture tough algal tissues in such snails. No-choice feeding experiments revealed that these radular traits were also phenotypically plastic, as they adjusted to the toughness of the algal food. Synthesis. This study indicates that the observed plasticity in the feeding ability of snails is mediated by wave exposure through phenotypic plasticity in the tissue toughness of algae. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction. Experiments revealed that environmental stress (wave exposure) modulated a structural seaweed trait (thallus toughness) and, indirectly, feeding-relevant traits (radular morphology) in the seaweed's main consumer (snail), enabling snails to maintain consumption efficacy across the observed range in seaweed toughness. Thus, plasticity in consumers and their resource species may reduce the potential effects of physical stress on their interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Energy availability and local adaptation are major components in mediating the effects of ocean acidification (OA) on marine species. In a long-term study, we investigated the effects of food availability and elevated pCO2 (~ 400, 1000 and 3000 μatm) on growth of newly settled Amphibalanus (Balanus) improvisus to reproduction, and on their offspring. We also compared two different populations, which were presumed to differ in their sensitivity to pCO2 due to differing habitat conditions: Kiel Fjord, Germany (Western Baltic Sea) with naturally strong pCO2 fluctuations, and the Tjärnö Archipelago, Sweden (Skagerrak) with far lower fluctuations. Over 20 weeks, survival, growth, reproduction and shell strength of Kiel barnacles were all unaffected by elevated pCO2, regardless of food availability. Moulting frequency and shell corrosion increased with increasing pCO2 in adults. Larval development and juvenile growth of the F1 generation were tolerant to increased pCO2, irrespective of parental treatment. In contrast, elevated pCO2 had a strong negative impact on survival of Tjärnö barnacles. Specimens from this population were able to withstand moderate levels of elevated pCO2 over 5 weeks when food was plentiful but showed reduced growth under food limitation. Severe levels of elevated pCO2 negatively impacted growth of Tjärnö barnacles in both food treatments. We demonstrate a conspicuously higher tolerance to elevated pCO2 in Kiel barnacles than in Tjärnö barnacles. This tolerance was carried-over from adults to their offspring. Our findings indicate that populations from fluctuating pCO2 environments are more tolerant to elevated pCO2 than populations from more stable pCO2 habitats. We furthermore provide evidence that energy availability can mediate the ability of barnacles to withstand moderate CO2 stress. Considering the high tolerance of Kiel specimens and the possibility to adapt over many generations, near future OA alone does not seem to present a major threat for A. improvisus
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2) using multifactorial long-term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-09
    Description: The distribution of egg masses of the freshwater snails Lymnaea stagnalis and Planorbarius corneus on the undersides of water lily leaves (e.g. Nuphar lutea) is related to the prevalence of the leaf-mining beetle Galerucella nymphaeae. When given the choice, Planorbarius significantly avoids leaves that were infested by the mining beetle. Conversely, Lymnaea did not discriminate against mined leaves. Intact Nuphar leaves block over 95% of incident ultraviolet radiation. Yet, ultraviolet transmission reaches almost 100% under beetle mining scars. These are several times wider than snail embryos. When exposed to natural sunlight, Lymnaea embryos proved to be resistant to ambient ultraviolet, while Planorbarius embryos were rapidly killed. Thus, one selective advantage of Planorbarius discrimination against mined leaves when depositing its eggs could be the avoidance of ultraviolet radiation passing through mining scars. Other mining-related modifications of the leaves, reduced area, decreased longevity, altered aufwuchs (i.e. biofilm and epibionts) are discussed but seem less relevant for the oviposition preference of Planorbarius. The discriminatory behaviour of this snail species was triggered by water-borne cues emitted by the damaged leaf, not by the eggs or larvae of the beetle. This study illustrates how environmental stress on a given species, ultraviolet radiation in this case, can be ecologically buffered (shading by Nuphar) or enhanced (reduction of Nuphar shading through beetle mining) by associated species. It highlights how the impact of a given stress depends on the identity of the target species as well as on the identity and role of other species in the community.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-05-30
    Description: Herbivory is particularly intense in tropical benthic communities, suggesting preference of constitutive, rather than inducible, anti-herbivory defense. The objective of the study was to examine whether anti-herbivore defenses in the red alga Hypnea pannosa J. Agardh and the brown algae Sargassum asperifolium Hering and G. Martens ex J. Agardh and Cystoseira myrica (S.G. Gmelin) C. Agardh could be induced and subsequently reduced in response to grazing by the amphipod Cymadusa filosa Savigny. During a 14-day treatment phase, algae were exposed to amphipod grazing or were left ungrazed (control). Subsequently, one subset of algae was used in feeding assays, whereas another was cultivated for additional 14 days without consumers (recovery phase). At the end of each phase, bioassays were conducted to detect defensive traits in terms of differences in consumption rates of grazed and control pieces of live algae and agar-based food containing nonpolar algal extracts. Consumption of grazed live S. asperifolium and H. pannosa specimens was lower than of control algae. Furthermore, nonpolar extracts of grazed S. asperifolium and C. myrica were less preferred than those from control algae. Defensive responses were exclusively detected after the treatment phase, although strong preference of ungrazed H. pannosa and C. myrica over grazed conspecifics continued throughout the recovery phase. These findings suggest that phenotypic plasticity in anti-herbivory defense of marine macroalgae 1) might be more common than previously shown, 2) could be switched on and off within 2 weeks, and 3) can be found in nonpolar algal extracts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...