GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (28 Seiten = 1MB) , Illustrationen, Graphen
    Edition: Online-Ausgabe
    Language: English
    Note: Bachelorarbeit wurde am IFM-GEOMAR Leibniz-lnstitut für Meereswissenschaften an der Universität Kiel angefertigt , Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (65 Blatt = 4 MB) , Illustrationen, Diagramme
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Saha, Mahasweta; Rempt, Martin; Stratil, Stephanie B; Wahl, Martin; Pohnert, Georg; Weinberger, Florian; Anil, Arga Chandrashekar (2014): Defence Chemistry Modulation by Light and Temperature Shifts and the Resulting Effects on Associated Epibacteria of Fucus vesiculosus. PLoS ONE, 9(10), e105333, https://doi.org/10.1371/journal.pone.0105333
    Publication Date: 2024-04-14
    Description: The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against microfoulers in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected (and thereby shaped) the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.
    Type: Dataset
    Format: application/zip, 2.6 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The thallus surface of the brown macroalga Fucus vesiculosus is covered by a specific biofilm community. This biofilm supposedly plays an important role in the interaction between host and environment. So far, we know little about compositional or functional shifts of this epibiotic bacterial community under changing environmental conditions. In this study, the response of the microbiota to different temperatures with respect to cell density and community composition was analyzed by nonculture-based methods (denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene). Redundancy analysis showed that despite high variability among host individuals temperature accounted for 20% of the variation in the bacterial community composition, whereas cell density did not differ between groups. Across all samples, 4341 bacterial operational taxonomic units (OTUs) at a 97% similarity level were identified. Eight percent of OTUs were significantly correlated with low, medium, and high temperatures. Notably, the family Rhodobacteraceae increased in relative abundance from 20% to 50% with increasing temperature. OTU diversity (evenness and richness) was higher at 15°C than at the lower and higher temperatures. Considering their known and presumed ecological functions for the host, change in the epibacterial community may entail shifts in the performance of the host alga.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial -diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The goals of this study were (1) to investigate whether Fucus vesiculosus regulates the production of its antifouling defence chemicals against epibacteria in response to light limitation and temperature shifts and (2) to investigate if different surface concentrations of defence compounds shape epibacterial communities. F. vesiculosus was incubated in indoor mesocosms at five different temperature conditions (5 to 25°C) and in outdoor mesocosms under six differently reduced sunlight conditions (0 to 100%), respectively. Algal surface concentrations of previously identified antifouling compounds - dimethylsulphopropionate (DMSP), fucoxanthin and proline – were determined and the bacterial community composition was characterized by in-depth sequencing of the 16S-rRNA gene. Altogether, the effect of different treatment levels upon defence compound concentrations was limited. Under all conditions DMSP alone appeared to be sufficiently concentrated to warrant for at least a partial inhibitory action against epibiotic bacteria of F. vesiculosus. In contrast, proline and fucoxanthin rarely reached the necessary concentration ranges for self-contained inhibition. Nonetheless, in both experiments along with the direct influence of temperature and light, all three compounds apparently affected the overall bacterial community composition associated with F. vesiculosus since tendencies for insensitivity towards all three compounds were observed among bacterial taxa that typically dominate those communities. Given that the concentrations of at least one of the compounds (in most cases DMSP) were always high enough to inhibit bacterial settlement, we conclude that the capacity of F. vesiculosus for such defence will hardly be compromised by shading or warming to temperatures up to 25°C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Effects of epibiotic bacteria associated with macroalgae on barnacle larval attachment were investigated. Eight bacterial isolates obtained from samples of three macroalga species were cultured as monospecies bacterial films and tested for their activity against barnacle (Amphibalanus improvisus) attachment in field experiments (Western Baltic Sea). Furthermore, natural biofilm communities associated with the surface of the local brown alga, Fucus vesiculosus, which were exposed to different temperatures (5, 15 and 20 °C), were harvested and subsequently tested. Generally, monospecies bacterial biofilms, as well as natural microbial assemblages, inhibited barnacle attachment by 20-67%. denaturing gradient gel electrophoresis fingerprints showed that temperature treatment shifted the bacterial community composition and weakened the repellent effects at 20 °C. Repellent effects were absent when settlement pressure of cyprids was high. Nonviable bacteria tended to repel cyprids when compared to the unfilmed surfaces. We conclude that biofilms can have a repellent effect benefiting the host by preventing heavy fouling on its surface. However, severe settlement pressure, as well as stressful temperature, may reduce the protective effects of the alga's biofilm. Our results add to the notion that the performance of F. vesiculosus may be reduced by multiple stressors in the course of global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: 1. International Conference on Marine Resources and Beyond, 05.-07.09.2011, Bremerhaven, Germany .
    Publication Date: 2013-04-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-15
    Description: GAME - Global Approach by Modular Experiments is in an international training programme that combines applied research with training for young scientists. Every year, parallel research projects on current ecological issues are organised at different locations around the world. The research is carried out by students working in bi-national pairs and supervised by scientists from GAME’s partner institutes. The unique GAME projects enable generalizable insights into urgent ecological issues. At the same time GAME links GEOMAR with numerous partner institutes worldwide and creates a global network for the sustainable exchange of scientific knowledge. In 2014, the participants investigate if microplastic is able to harm marine animals. In a short film, they report about their life and work.
    Type: Video , NonPeerReviewed
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...