GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-11-09
    Description: Protists (microbial eukaryotes) are diverse, major components of marine ecosystems, and are fundamental to ecosystem services. In the last 10 years, molecular studies have highlighted substantial novel diversity in marine systems including sequences with no taxonomic context. At the same time, many known protists remain without a DNA identity. Since the majority of pelagic protists are too small to identify by light microscopy, most are neither comprehensively or regularly taken into account, particularly in Long-term Ecological Research Sites. This potentially undermines the quality of research and the accuracy of predictions about biological species shifts in a changing environment. The ICES Working Group for Phytoplankton and Microbial Ecology conducted a questionnaire survey in 2013–2014 on methods and identification of protists using molecular methods plus a literature review of protist molecular diversity studies. The results revealed an increased use of high-throughput sequencing methods and a recognition that sequence data enhance the overall datasets on protist species composition. However, we found only a few long-term molecular studies and noticed a lack of integration between microscopic and molecular methods. Here, we discuss and put forward recommendations to improve and make molecular methods more accessible to Long-term Ecological Research Site investigators.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-24
    Description: Ocean iron fertilization experiments enable the quantitative study of processes shaping the structure and functioning of pelagic ecosystems following perturbation under in situ conditions. EIFEX was conducted within a stationary eddy adjacent to the Antarctic Polar Front over 38 days in February/March 2004 and induced a massive diatom bloom. Here, we present the responses in abundance and biomass of all identifiable protozooplankton taxa (heterotrophic protists ranging from 2 to 500 µm) during the bloom. Acantharia, dinoflagellates and ciliates together contributed 〉90% of protozooplankton biomass in the upper 100 m throughout the experiment with heterotrophic nanoflagellates, nassellaria, spumellaria, phaeodaria, foraminifera and the taxopodidean Sticholonche zanclea providing the remainder. Total protozooplankton biomass increased slightly from 1.0 to 1.3 g C m−2 within the fertilized patch and remained at 0.7+0.04 g C m−2 outside it. However, distinct trends in population build-up or decline were observed within the dominant taxa in each group. In general, smaller less-defended groups such as aloricate ciliates and athecate dinoflagellates declined, whereas the biomass of large, spiny and armoured groups, in particular acantharia, large tintinnids and thecate dinoflagellates increased inside the patch. We attribute the higher accumulation rates of defended taxa to selective, heavy grazing pressure by the large stocks of copepods. Of the defended taxa, acantharia had the lowest mortality rates and the highest biomass. Large stocks of tintinnid loricae in the deep water column identify this group as a relevant contributor to deep organic carbon export. Highest accumulation rates (0.11 day−1) were recorded in S. zanclea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...