GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (314)
  • Nature Publishing Group  (2)
  • Geological Society of America (GSA)  (1)
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 422 (2003), S. 277-277 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times and could even have contributed to the past 11,700 years of relatively mild ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: Paleoclimate evidence from South America and Asia has been interpreted to indicate that tropical rainfall migrated southward during the Northern Hemisphere cooling associated with Heinrich stadial 1 (HS1), an event of massive iceberg discharge to the North Atlantic ca. 18–15 ka. Although arid conditions associated with such a shift are well documented in southern Asia, as far south as Borneo, debate still exists regarding the precipitation response in southern Indonesia and Australia during HS1. This study utilizes concentrations of the long-lived nuclide 232Th as a proxy for detrital riverine input and 230Th normalization to estimate the history of preserved fluxes reaching the seafloor in the Flores Sea, located between southern Sulawesi and the Lesser Sunda Islands, Indonesia. Because the only source of 232Th to the ocean is continental minerals, this proxy is a robust indicator of continental weathering. The 230Th normalized burial fluxes of lithogenic and biogenic matter demonstrate that both detrital and biogenic fluxes in the Flores Sea were higher during HS1 than any other period in the past 22 k.y. High detrital fluxes indicate enhanced precipitation runoff from surrounding landmasses during a period of maximum southward shift of the Intertropical Convergence Zone. This study further constrains the northern limit of enhanced rainfall associated with a southward shift of Australian monsoon-related rainfall at the time of HS1 and highlights the value of 232Th as a proxy of continental input to deep-sea sediment records.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © Macmillan Publishers Limited, 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 2 (2011): 293, doi:10.1038/ncomms1297.
    Description: The relative importance of north–south migrations of the intertropical convergence zone (ITCZ) versus El Niño-Southern Oscillation and its associated Pacific Walker Circulation (PWC) variability for past hydrological change in the western tropical Pacific is unclear. Here we show that north–south ITCZ migration was not the only mechanism of tropical Pacific hydrologic variability during the last millennium, and that PWC variability profoundly influenced tropical Pacific hydrology. We present hydrological reconstructions from Cattle Pond, Dongdao Island of the South China Sea, where multi-decadal rainfall and downcore grain size variations are correlated to the Southern Oscillation Index during the instrumental era. Our downcore grain size reconstructions indicate that this site received less precipitation during relatively warm periods, AD 1000–1400 and AD 1850–2000, compared with the cool period (AD 1400–1850). Including our new reconstructions in a synthesis of tropical Pacific records results in a spatial pattern of hydrologic variability that implicates the PWC.
    Description: This work was supported by the Natural Science Foundation of China (NSFC) (40730107) and the Major State Basic Research Development Program of China (973 Program) (No.2010CB428902). DWO acknowledges support from the US NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas (2014): North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80, https://doi.org/10.1038/nature13196
    Publication Date: 2023-03-03
    Description: The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gibbons, Fern T; Oppo, Delia W; Mohtadi, Mahyar; Rosenthal, Yair; Cheng, Jun; Liu, Zhengyu; Linsley, Braddock K (2014): Deglacial d18O and hydrologic variability in the tropical Pacific and Indian Oceans. Earth and Planetary Science Letters, 387, 240-251, https://doi.org/10.1016/j.epsl.2013.11.032
    Publication Date: 2023-03-03
    Description: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Keywords: Center for Marine Environmental Sciences; IMAGES; International Marine Global Change Study; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Moffa-Sanchez, Paola; Oppo, Delia W; Martínez Méndez, Gema; Steinke, Stephan; Hebbeln, Dierk (2017): Stable Oxygen Isotopes and Mg/Ca in Planktic Foraminifera From Modern Surface Sediments of the Western Pacific Warm Pool: Implications for Thermocline Reconstructions. Paleoceanography, 32(11), 1174-1194, https://doi.org/10.1002/2017PA003122
    Publication Date: 2023-03-03
    Description: Mg/Ca and stable oxygen isotope compositions (d18O) of planktic foraminifera tests are commonly used as proxies to reconstruct past ocean conditions including variations in the vertical water column structure. Accurate proxy calibrations require thorough regional studies, since parameters such as calcification depth and temperature of planktic foraminifera depend on local environmental conditions. Here we present radiocarbon-dated, modern surface sediment samples and water column data (temperature, salinity, and seawater d18O) from the Western Pacific Warm Pool. Seawater d18O (d18OSW) and salinity are used to calculate individual regressions for western Pacific surface and thermocline waters (d18OSW = 0.37 × S-12.4 and d18OSW = 0.33 × S-11.0). We combine shell d18O and Mg/Ca with water column data to estimate calcification depths of several planktic foraminifera and establish regional Mg/Ca-temperature calibrations. Globigerinoides ruber, Globigerinoides elongatus, and Globigerinoides sacculifer reflect mixed layer conditions. Pulleniatina obliquiloculata and Neogloboquadrina dutertrei and Globorotalia tumida preserve upper and lower thermocline conditions, respectively. Our multispecies Mg/Ca-temperature calibration (Mg/Ca = 0.26exp0.097*T) matches published regressions. Assuming the same temperature sensitivity in all species, we propose species-specific calibrations that can be used to reconstruct upper water column temperatures. The Mg/Ca temperature dependencies of G. ruber, G. elongatus, and G. tumida are similar to published equations. However, our data imply that calcification temperatures of G. sacculifer, P. obliquiloculata, and N. dutertrei are exceptionally warm in the western tropical Pacific and thus underestimated by previously published calibrations. Regional Mg/Ca-temperature relations are best described by Mg/Ca = 0.24exp0.097*T for G. sacculifer and by Mg/Ca = 0.21exp0.097*T for P. obliquiloculata and N. dutertrei.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hollstein, Martina; Mohtadi, Mahyar; Rosenthal, Yair; Prange, Matthias; Oppo, Delia W; Martínez Méndez, Gema; Tachikawa, Kazuyo; Moffa-Sanchez, Paola; Steinke, Stephan; Hebbeln, Dierk (2018): Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: Forcing mechanisms and implications for the glacial Walker circulation. Quaternary Science Reviews, 201, 429-445, https://doi.org/10.1016/j.quascirev.2018.10.030
    Publication Date: 2023-03-03
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tierney, Jessica E; Oppo, Delia W; Rosenthal, Yair; Russell III, James M; Linsley, Braddock K (2010): Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia. Paleoceanography, 25(1), PA1102, https://doi.org/10.1029/2009PA001871
    Publication Date: 2023-05-12
    Description: Instrumental data suggest that major shifts in tropical Pacific atmospheric dynamics and hydrology have occurred within the past century, potentially in response to anthropogenic warming. To better understand these trends, we use the hydrogen isotopic ratios of terrestrial higher plant leaf waxes (DDwax) in marine sediments from southwest Sulawesi, Indonesia, to compile a detailed reconstruction of central Indo-Pacific Warm Pool (IPWP) hydrologic variability spanning most of the last two millennia. Our paleodata are highly correlated with a monsoon reconstruction from Southeast Asia, indicating that intervals of strong East Asian summer monsoon (EASM) activity are associated with a weaker Indonesian monsoon (IM). Furthermore, the centennial-scale oscillations in our data follow known changes in Northern Hemisphere climate (e.g., the Little Ice Age and Medieval Warm Period) implying a dynamic link between Northern Hemisphere temperatures and IPWP hydrology. The inverse relationship between the EASM and IM suggests that migrations of the Intertropical Convergence Zone and associated changes in monsoon strength caused synoptic hydrologic shifts in the IPWP throughout most of the past two millennia.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dahl, Kristina A; Oppo, Delia W (2006): Sea surface temperature pattern reconstructions in the Arabian Sea. Paleoceanography, 21(1), PA1014, https://doi.org/10.1029/2005PA001162
    Publication Date: 2023-05-12
    Description: Sea surface temperature (SST) and seawater d18O (d18Ow) were reconstructed in a suite of sediment cores from throughout the Arabian Sea for four distinct time intervals (0 ka, 8 ka, 15 ka, and 20 ka) with the aim of understanding the history of the Indian Monsoon and the climate of the Arabian Sea region. This was accomplished through the use of paired Mg/Ca and d18O measurements of the planktonic foraminifer Globigerinoides ruber. By analyzing basin-wide changes and changes in cross-basinal gradients, we assess both monsoonal and regional-scale climate changes. SST was colder than present for the majority of sites within all three paleotime slices. Furthermore, both the Indian Monsoon and the regional Arabian Sea mean climate have varied substantially over the past 20 kyr. The 20 ka and 15 ka time slices exhibit average negative temperature anomalies of 2.5°-3.5°C attributable, in part, to the influences of glacial atmospheric CO2 concentrations and large continental ice sheets. The elimination of the cross-basinal SST gradient during these two time slices likely reflects a decrease in summer monsoon and an increase in winter monsoon strength. Changes in d18Ow that are smaller than the d18O signal due to global ice volume reflect decreased evaporation and increased winter monsoon mixing. SSTs throughout the Arabian Sea were still cooler than present by an average of 1.4°C in the 8 ka time slice. These cool SSTs, along with lower d18Ow throughout the basin, are attributed to stronger than modern summer and winter monsoons and increased runoff and precipitation. The results of this study underscore the importance of taking a spatial approach to the reconstruction of processes such as monsoon upwelling.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rosenthal, Yair; Lear, Caroline H; Oppo, Delia W; Linsley, Braddock K (2006): Temperature and carbonate ion effects on Mg/Ca and Sr/Ca ratios in benthic foraminifera: Aragonitic species Hoeglundina elegans. Paleoceanography, 21(1), PA1007, https://doi.org/10.1029/2005PA001158
    Publication Date: 2023-05-12
    Description: Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on "live" and "dead" specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([DeltaCO3]aragonite) below 15 µmol/kg. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [DeltaCO3]aragonite 〉 15 µmol/kg). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...