GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-04-23
    Description: Accurate pH measurements in polar waters and sea ice brines require pH indicator dyes characterized at near-zero and below-zero temperatures and high salinities. We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye suitable for pH measurements in seawater and conservative seawater-derived brines at salinities (S) between 35 and 100 and temperatures (T) between their freezing point and 298.15 K (25 °C). Within this temperature and salinity range, using purified mCP and a novel thermostated spectrophotometric device, the pH on the total scale (pHT) can be calculated from direct measurements of the absorbance ratio R of the dye in natural samples as pHT=−log(kT2e2)+log(R−e11−Re3e2) Based on the mCP characterization in these extended conditions, the temperature and salinity dependence of the molar absorptivity ratios and − log(kT2e2) of purified mCP is described by the following functions: e1 = −0.004363 + 3.598 × 10−5T, e3/e2 = −0.016224 + 2.42851 × 10−4T + 5.05663 × 10−5(S − 35), and − log(kT2e2) = −319.8369 + 0.688159 S −0.00018374 S2 + (10508.724 − 32.9599 S + 0.059082S2) T−1 + (55.54253 − 0.101639 S) ln T −0.08112151T. This work takes the characterisation of mCP beyond the currently available ranges of 278.15 K ≤ T ≤ 308.15 K and 20 ≤ S ≤ 40 in natural seawater, thereby allowing high quality pHT measurements in polar systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-23
    Description: In certain regions of the predominantly nitrogen limited ocean, microbes can become co-limited by phosphorus. Within such regions, a proportion of the dissolved organic phosphorus pool can be accessed by microbes employing a variety of alkaline phosphatase (APase) enzymes. In contrast to the PhoA family of APases that utilize zinc as a cofactor, the recent discovery of iron as a cofactor in the more widespread PhoX and PhoD implies the potential for a biochemically dependant interplay between oceanic zinc, iron and phosphorus cycles. Here we demonstrate enhanced natural community APase activity following iron amendment within the low zinc and moderately low iron Western North Atlantic. In contrast we find no evidence for trace metal limitation of APase activity beneath the Saharan dust plume in the Eastern Atlantic. Such intermittent iron limitation of microbial phosphorus acquisition provides an additional facet in the argument for iron controlling the coupling between oceanic nitrogen and phosphorus cycles.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-23
    Description: The development of phosphate sensors suitable for long-term in situ deployments in natural waters, is essential to improve our understanding of the distribution, fluxes, and biogeochemical role of this key nutrient in a changing ocean. Here, we describe the optimization of the molybdenum blue method for in situ work using a lab-on-chip (LOC) analyzer and evaluate its performance in the laboratory and at two contrasting field sites. The in situ performance of the LOC sensor is evaluated using hourly time-series data from a 56-day trial in Southampton Water (UK), as well as a month-long deployment in the subtropical oligotrophic waters of Kaneohe Bay (Hawaii, USA). In Kaneohe Bay, where phosphate concentrations were characteristic of the dry season (0.13 ± 0.03 μM, n = 704), the in situ sensor accuracy was 16 ± 12% and a potential diurnal cycle in phosphate concentrations was observed. In Southampton Water, the sensor data (1.02 ± 0.40 μM, n = 1,267) were accurate to ±0.10 μM relative to discrete reference samples. Hourly in situ monitoring revealed striking tidal and storm derived fluctuations in phosphate concentrations in Southampton Water that would not have been captured via discrete sampling. We show the impact of storms on phosphate concentrations in Southampton Water is modulated by the spring-neap tidal cycle and that the 10-fold decline in phosphate concentrations observed during the later stages of the deployment was consistent with the timing of a spring phytoplankton bloom in the English Channel. Under controlled laboratory conditions in a 250 L tank, the sensor demonstrated an accuracy and precision better than 10% irrespective of the salinity (0–30), turbidity (0–100 NTU), colored dissolved organic matter (CDOM) concentration (0–10 mg/L), and temperature (5–20°C) of the water (0.3–13 μM phosphate) being analyzed. This work demonstrates that the LOC technology is mature enough to quantify the influence of stochastic events on nutrient budgets and to elucidate the role of phosphate in regulating phytoplankton productivity and community composition in estuarine and coastal regimes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-04-23
    Description: Coastal marine environments are contaminated globally with a vast quantity of unexploded ordnance and munitions from intentional disposal. These munitions contain organic explosive compounds as well as a variety of metals, and represent point sources of chemical pollution to marine waters. Most underwater munitions originate from World Wars at the beginning of the twentieth century, and metal munitions housings have been impacted by extensive corrosion over the course of the following decades. As a result, the risk of munitions-related contaminant release to the water column is increasing. The behavior of munitions compounds is well-characterized in terrestrial systems and groundwater, but is only poorly understood in marine systems. Organic explosive compounds, primarily nitroaromatics and nitramines, can be degraded or transformed by a variety of biotic and abiotic mechanisms. These reaction products exhibit a range in biogeochemical characteristics such as sorption by particles and sediments, and variable environmental behavior as a result. The reaction products often exhibit increased toxicity to biological receptors and geochemical controls like sorption can limit this exposure. Environmental samples typically show low concentrations of munitions compounds in water and sediments (on the order of ng/L and μg/kg, respectively), and ecological risk appears generally low. Nonetheless, recent work demonstrates the possibility of sub-lethal genetic and metabolic effects. This review evaluates the state of knowledge on the occurrence, fate, and effect of munition-related chemical contaminants in the marine environment. There remain a number of knowledge gaps that limit our understanding of munitions-related contaminant spread and effect, and the need for additional work is made all the more urgent by increasing risk of release to the environment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: Runoff from the Greenland Ice Sheet (GrIS) is thought to enhance marine productivity by adding bioessential iron and silicic acid to coastal waters. However, experimental data suggest nitrate is the main summertime growth-limiting resource in regions affected by meltwater around Greenland. While meltwater contains low nitrate concentrations, subglacial discharge plumes from marine-terminating glaciers entrain large quantities of nitrate from deep seawater. Here, we characterize the nitrate fluxes that arise from entrainment of seawater within these plumes using a subglacial discharge plume model. The upwelled flux from 12 marine-terminating glaciers is estimated to be 〉1000% of the total nitrate flux from GrIS discharge. This plume upwelling effect is highly sensitive to the glacier grounding line depth. For a majority of Greenland’s marine-terminating glaciers nitrate fluxes will diminish as they retreat. This decline occurs even if discharge volume increases, resulting in a negative impact on nitrate availability and thus summertime marine productivity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-23
    Description: Dissolved Fe(II) in seawater is deemed an important micronutrient for microbial organisms, but its analysis is challenging due to its transient nature. We conducted a series of Fe(II) method comparison experiments, where spikes of 5 to 31 nM Fe(II) were added to manipulated seawaters with varying dissolved oxygen (37 to 156 μM) concentrations. The observed Fe(II) concentrations from four analytical methods were compared: spectrophotometry with ferrozine, stripping voltammetry, and flow injection analysis using luminol (with, and without, a pre-concentration column). Direct comparisons between the different methods were undertaken from the derived apparent Fe(II) oxidation rate constant (k1). Whilst the two luminol based methods produced the most similar concentrations throughout the experiments, k1 was still subject to a 20–30% discrepancy between them. Contributing factors may have included uncertainty in the calibration curves, and different responses to interferences from Co(II) and humic/fulvic organic material. The difference in measured Fe(II) concentrations between the luminol and ferrozine methods, from 10 min–2 h after the Fe(II) spikes were added, was always relatively large in absolute terms (〉4 nM) and relative to the spike added (〉20% of the initial Fe(II) concentration). k1 derived from ferrozine observed Fe(II) concentrations was 3–80%, and 4–16%, of that derived from luminol observed Fe(II) with, and without, pre-concentration respectively. The poorest comparability of k1 was found after humic/fulvic material was added to raise dissolved organic carbon to 120 μM. A luminol method without pre-concentration then observed Fe(II) to fall below the detection limit (〈0.49 nM) within 10 min of a 17 nM Fe(II) spike addition, yet other methods still observed Fe(II) concentrations of 2.7 to 3.7 nM 30 min later. k1 also diverged accordingly with the ferrozine derived value 4% of that derived from luminol without pre-concentration. These apparent inconsistencies suggest that some inter-dataset differences in measured Fe(II) oxidation rates in natural waters may be attributable to differences in the analytical methods used rather than arising solely from substantial shifts in Fe(II) speciation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-23
    Description: The ocean is a major sink for anthropogenic carbon dioxide (CO2), with the CO2 uptake causing changes to ocean chemistry. To monitor these changes and provide a chemical background for biological and biogeochemical studies, high quality partial pressure of CO2 (pCO2) sensors are required, with suitable accuracy and precision for ocean measurements. Optodes have the potential to measure in situ pCO2 without the need for wet chemicals or bulky gas equilibration chambers that are typically used in pCO2 systems. However, optodes are still in an early developmental stage compared to more established equilibrator-based pCO2 systems. In this study, we performed a laboratory-based characterization of a time-domain dual lifetime referencing pCO2 optode system. The pCO2 optode spot was illuminated with low intensity light (0.2 mA, 0.72 mW) to minimize spot photobleaching. The spot was calibrated using an experimental gas calibration rig prior to deployment, with a determined response time (τ63) of 50 s at 25°C. The pCO2 optode was deployed as an autonomous shipboard underway system across the high latitude North Atlantic Ocean with a resolution of ca.10 measurements per hour. The optode data was validated with a secondary shipboard equilibrator-based infrared pCO2 instrument, and pCO2 calculated from discrete samples of dissolved inorganic carbon and total alkalinity. Further verification of the pCO2 optode data was achieved using complimentary variables such as nutrients and dissolved oxygen. The shipboard precision of the pCO2 sensor was 9.5 μatm determined both from repeat measurements of certified reference materials and from the standard deviation of seawater measurements while on station. Finally, the optode deployment data was used to evaluate the physical and biogeochemical controls on pCO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: Iron (Fe) is an essential micronutrient for marine microbial organisms, and low supply controls productivity in large parts of the world’s ocean. The high latitude North Atlantic is seasonally Fe limited, but Fe distributions and source strengths are poorly constrained. Surface ocean dissolved Fe (DFe) concentrations were low in the study region (〈0.1 nM) in summer 2010, with significant perturbations during spring 2010 in the Iceland Basin as a result of an eruption of the Eyjafjallajökull volcano (up to 2.5 nM DFe near Iceland) with biogeochemical consequences. Deep water concentrations in the vicinity of the Reykjanes Ridge system were influenced by pronounced sediment resuspension, with indications for additional inputs by hydrothermal vents, with subsequent lateral transport of Fe and manganese plumes of up to 250–300 km. Particulate Fe formed the dominant pool, as evidenced by 4–17 fold higher total dissolvable Fe compared with DFe concentrations, and a dynamic exchange between the fractions appeared to buffer deep water DFe. Here we show that Fe supply associated with deep winter mixing (up to 103 nmol m−2 d−1) was at least ca. 4–10 times higher than atmospheric deposition, diffusive fluxes at the base of the summer mixed layer, and horizontal surface ocean fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-04-23
    Description: The subtropical oceans are home to the largest phytoplankton biome on the planet. Yet, little is known about potential impacts of ocean acidification (OA) on phytoplankton community composition in the vast oligotrophic ecosystems of the subtropical gyres. To address this question, we conducted an experiment with 9 in situ mesocosms (~35 m3) off the coast of Gran Canaria in the eastern subtropical North Atlantic over a period of 9 weeks. By establishing a gradient of pCO2 ranging from ~350 to 1025 µatm, we simulated carbonate chemistry conditions as projected until the end of the 21st century. Furthermore, we injected nutrient-rich deep water into the mesocosms halfway through the experiment to simulate a natural upwelling event, which regularly leads to patchy nutrient fertilization in the study region. The temporal developments of major taxonomic groups of phytoplankton were analyzed by flow cytometry, pigment composition and microscopy. We observed distinct shifts in phytoplankton community structure in response to high CO2, with markedly different patterns depending on nutrient status of the system. Phytoplankton biomass during the oligotrophic phase was dominated by picocyanobacteria (Synechococcus), which constituted 60-80% of biomass and displayed significantly higher cell abundances at elevated pCO2. The addition of deep water triggered a substantial bloom of large, chain-forming diatoms (mainly Guinardia striata and Leptocylindrus danicus) that dominated the phytoplankton community during the bloom phase (70-80% of biomass) and until the end of the experiment. A CO2 effect on bulk diatom biomass became apparent only in the highest CO2 treatments (〉800 µatm), displaying elevated concentrations especially in the stationary phase after nutrient depletion. Notably, these responses were tightly linked to distinct interspecific shifts within the diatom assemblage, particularly favoring the largest species Guinardia striata. Other taxonomic groups contributed less to total phytoplankton biomass, but also displayed distinct responses to OA treatments. For instance, higher CO2 favored the occurrence of prymnesiophyceae (Phaeocystis globosa) and dictyochophyceae, whereas dinoflagellates were negatively affected by increasing CO2. Altogether, our findings revealed considerable shifts in species composition in response to elevated CO2 and indicated that phytoplankton communities in the subtropical oligotrophic oceans might be profoundly altered by ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-23
    Description: Increasing atmospheric CO2 concentrations are resulting in a reduction in seawater pH, with potential detrimental consequences for marine organisms. Improved efforts are required to monitor the anthropogenically driven pH decrease in the context of natural pH variations. We present here a high resolution surface water pH data set obtained in summer 2011 in North West European Shelf Seas. The aim of our paper is to demonstrate the successful deployment of the pH sensor, and discuss the carbonate chemistry dynamics of surface waters of Northwest European Shelf Seas using pH and ancillary data. The pH measurements were undertaken using spectrophotometry with a Lab-on-Chip pH sensor connected to the underway seawater supply of the ship. The main processes controlling the pH distribution along the ship's transect, and their relative importance, were determined using a statistical approach. The pH sensor allowed 10 measurements h(-1) with a precision of 0.001 pH units and a good agreement with pH calculated from a pair of discretely sampled carbonate variables dissolved inorganic carbon (DIC), total alkalinity (TA) and partial pressure of CO2 (pCO(2)) (e.g., pH(DICpCO2)). For this summer cruise, the biological activity formed the main control on the pH distribution along the cruise transect. This study highlights the importance of high quality and high resolution pH measurements for the assessment of carbonate chemistry dynamics in marine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...