GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers  (4)
  • Springer International Publishing  (3)
  • GSL (Geological Society London)  (2)
  • 1
    Publication Date: 2020-02-06
    Description: The interplay between sediment deposition patterns, organic matter type and the quantity and quality of reactive mineral phases determines the accumulation, speciation, and isotope composition of pore water and solid phase sulfur constituents in marine sediments. Here, we present the sulfur geochemistry of siliciclastic sediments from two sites along the Argentine continental slope—a system characterized by dynamic deposition and reworking, which result in non-steady state conditions. The two investigated sites have different depositional histories but have in common that reactive iron phases are abundant and that organic matter is refractory—conditions that result in low organoclastic sulfate reduction rates (SRR). Deposition of reworked, isotopically light pyrite and sulfurized organic matter appear to be important contributors to the sulfur inventory, with only minor addition of pyrite from organoclastic sulfate reduction above the sulfate-methane transition (SMT). Pore-water sulfide is limited to a narrow zone at the SMT. The core of that zone is dominated by pyrite accumulation. Iron monosulfide and elemental sulfur accumulate above and below this zone. Iron monosulfide precipitation is driven by the reaction of low amounts of hydrogen sulfide with ferrous iron and is in competition with the oxidation of sulfide by iron (oxyhydr)oxides to form elemental sulfur. The intervals marked by precipitation of intermediate sulfur phases at the margin of the zone with free sulfide are bordered by two distinct peaks in total organic sulfur (TOS). Organic matter sulfurization appears to precede pyrite formation in the iron-dominated margins of the sulfide zone, potentially linked to the presence of polysulfides formed by reaction between dissolved sulfide and elemental sulfur. Thus, SMTs can be hotspots for organic matter sulfurization in sulfide-limited, reactive iron-rich marine sedimentary systems. Furthermore, existence of elemental sulfur and iron monosulfide phases meters below the SMT demonstrates that in sulfide-limited systems metastable sulfur constituents are not readily converted to pyrite but can be buried to deeper sediment depths. Our data show that in non-steady state systems, redox zones do not occur in sequence but can reappear or proceed in inverse sequence throughout the sediment column, causing similar mineral alteration processes to occur at the same time at different sediment depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  In: Submarine Mass Movements and their Consequences. Advances in Natural and Technological Hazards Research, 41 . Springer International Publishing, pp. 291-300. ISBN 978-3-319-20978-4
    Publication Date: 2019-09-23
    Description: Lake Ohrid (LO), a transboundary lake shared by Macedonia and Albania on the Balkan Peninsula, is not only considered to be the oldest lake in Europe (~2 Ma) but has a long and continuous sedimentary history. An advantage at LO is the availability of hydroacoustic data sets of good quality covering the entire lake basin. The tectonically formed basin is filled with thick undisturbed sediments. However, the overall internal structure of LO is characterized by numerous faults, clinoform structures, and several Mass Transport Deposits (MTDs). By using a seismic chronology model (SCM) correlating seismic reflector packages with Marine Isotope Stages (MIS) we estimate the occurrence of the deepest MTD detected in the southern basin at the transition of MIS9 to MIS8 (~300 ka) defining the onset of the sliding history in LO that is still ongoing today. In general, MTDs are widespread within the basin but they do cluster at active faults. Two large MTDs occurred in the early MIS7 (~230 ka, ~220 ka) and after a quiesence period of about ~70 ka two additional large MTDs have been detected in the late penultimate glacial period MIS6 (~150 ka, 130 ka). MIS5 seemed to be another quiet period with respect to mass wasting. In the younger sedimentary history mass movement is a common process with several large and mid-sized deposits mapped at all stratigraphic levels. The youngest slide deposits are estimated to occur within the last 2,000 years. The main outcome of this paper is a model for the spatial and temporal distribution of mass wasting for Lake Ohrid.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  In: Submarine Mass Movements and their Consequences : 7th International Symposium. , ed. by Lamarche, G. Springer International Publishing, Cham, pp. 145-154.
    Publication Date: 2017-11-22
    Description: Agadir Canyon is one of the largest submarine canyons in the World, supplying giant submarine sediment gravity flows to the Agadir Basin and the wider Moroccan Turbidite System. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. New acoustic and sedimentological data of the Agadir Canyon area were collected during RV Maria S. Merian Cruise 32 in autumn 2013. The data show a prominent headwall area around 200 km south of the head of Agadir Canyon. The failure occurred along a pronounced weak layer in a sediment wave field. The slab-type failure rapidly disintegrated and transformed into a debris flow, which entered Agadir Canyon at 2500 m water depth. Interestingly, the debris flow did not disintegrate into a turbidity current when it entered the canyon despite a significant increase in slope angle. Instead, the material was transported as debrite for at least another 200 km down the canyon. It is unlikely that this giant debris flow significantly contributed to the deposits in the wider Moroccan Turbidite System.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  In: Submarine Mass Movements and Their Consequences : 7th International Symposium. , ed. by Lamarche, G., Mountjoy, J., Bull, S. and Hubble, T. Advances in Natural and Technological Hazards Research, 37 . Springer International Publishing, Cham, pp. 419-426. ISBN 9783319209784
    Publication Date: 2021-05-11
    Description: Submarine spreading is a type of mass movement that involves the extension and fracturing of a thin surficial layer of sediment into coherent blocks and their finite displacement on a gently sloping slip surface. Its characteristic seafloor signature is a repetitive pattern of parallel ridges and troughs oriented perpendicular to the direction of mass movement. We map ~30 km2 of submarine spreads on the upper slope of the Hikurangi margin, east of Poverty Bay, North Island, New Zealand, using multibeam echosounder and 2D multichannel seismic data. These data show that spreading occurs in thin, gently-dipping, parallel-bedded clay, silt and sandy sedimentary units deposited as lowstand clinoforms. More importantly, high-amplitude and reverse polarity seismic reflectors, which we interpret as evidence of shallow gas accumulations, occur extensively in the fine sediments of the upper continental slope, but are either significantly weaker or entirely absent where the spreads are located. We use this evidence to propose that shallow gas, through the generation of pore pressure, has played a key role in establishing the failure surface above which submarine spreading occurred. Additional dynamic changes in pore pressure could have been triggered by a drop in sea level during the Last Glacial Maximum and seismic loading.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GSL (Geological Society London)
    In:  In: Subaqueous Mass Movements and Their Consequences: Assessing Geohazards, Environmental Implications and Economic Significance of Subaqueous Landslides. , ed. by Lintern, D. G. Special Publications Geological Society London, 477 . GSL (Geological Society London), London, UK, pp. 151-167.
    Publication Date: 2021-05-10
    Description: The NW African continental margin is well known for the occurrence of large-scale but infrequent submarine landslides. The aim of this paper is to synthesize the current knowledge on submarine mass wasting off NW Africa with a special focus on the distribution and timing of large landslides. The described area reaches from southern Senegal to the Agadir Canyon. The largest landslides from south to north are the Dakar Slide, the Mauritania Slide, the Cap Blanc Slide, the Sahara Slide and the Agadir Slide. Volumes of individual slides reach several hundreds of cubic kilometres; run-outs are up to 900 km. In addition, giant volcanic debris avalanches are widespread on the flanks of the Canary Islands. All headwall areas are complex with clear indications of multiple failures. The most prominent similarity between all investigated landsides is the existence of widespread glide planes that follow the stratigraphy, which points to weak layers as most important preconditioning factor for the failures. Landslides with volumes larger than 100 m3 are close to being evenly distributed over time, contradicting previous suggestions that landslides off NW Africa occur at periods of low or rising sea level. The risk associated with the landslides off NW Africa, however, is relatively low due to their long recurrence rates.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    GSL (Geological Society London)
    Publication Date: 2022-12-20
    Description: Submarine geomorphology underwent significant development in the second half of the 20 th century, largely thanks to advances in technology by the military, navigation and hydrocarbon industry, which were later transferred to the academic and commercial sectors. In this chapter we summarise the development of the key methods used in submarine geomorphology between 1950 and 2000, which include sidescan sonar, multibeam echosounder, reflection seismology, seafloor sampling and marine robotic systems. We then highlight the progress in our understanding of seafloor processes and landforms made using these methods, focusing on continental shelf landforms, slope instability, submarine canyons, submarine fans and channels, and current-controlled landforms.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-23
    Description: Coastal and ocean island volcanoes are renowned for having unstable flanks. This can lead to flank deformation on a variety of temporal and spatial scales ranging from slow creep to catastrophic sector collapse. A large section of these unstable flanks is often below sea level, where information on the volcano-tectonic structure and ground deformation is limited. Consequently, kinematic models that attempt to explain measured ground deformation onshore associated with flank instability are poorly constrained in the offshore area. Here, we attempt to determine the locations and the morpho-tectonic structures of the boundaries of the submerged unstable southeastern flank of Mount Etna (Italy). The integration of new marine data (bathymetry, microbathymetry, offshore seismicity, reflection seismic lines) and published marine data (bathymetry, seafloor geodesy, reflection seismic lines) allows identifying the lineament north of Catania Canyon as the southern lateral boundary with a high level of confidence. The northern and the distal (seaward) boundaries are less clear because no microbathymetric or seafloor geodetic data are available. Hypotheses for their locations are presented. Geophysical imaging suggests that the offshore Timpe Fault System is a shallow second-order structure that likely results from extensional deformation within the moving flank. Evidence for active uplift and compression upslope of the amphitheater-shaped depression from seismic data along with subsidence of the onshore Giarre Wedge block observed in ground deformation data leads us to propose that this block is a rotational slump, which moves on top of the large-scale instability. The new shoreline-crossing structural assessment may now inform and improve kinematic models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-20
    Description: Digital elevation models (DEMs) are crucial in natural hazard assessments, as they often present the only comprehensive information. While satellites deliver remote sensing information of the land surface of up to 2m resolution, only 25% of the seafloor is mapped with a minimum resolution of 400m. The acquisition of high-resolution bathymetry requires hydroacoustic surveys by research vessels or autonomous vehicles, which is time-consuming and expensive. Predicted bathymetry from satellite altimetry, on the other hand, is widely available but has a significantly lower spatial resolution and high uncertainties in elevation, especially in shallow waters. The research on volcanic islands as a source of both volcanic as well as marine hazards such as tsunamis, is greatly limited by the lack of high-resolution bathymetry. Here we compare 24 geomorphometric parameters of 47 volcanic islands derived from a) the comprehensive bathymetric data of the General Bathymetric Chart of the Ocean (GEBCO) and b) high-resolution (〈 250m), ship-based bathymetry. Out of 24 parameters tested, 20 show 〈 ± 2.5% median deviation, and quartiles 〈 ± 10%. Parameters describing the size of a volcanic island are the most robust and slope parameters show the greatest deviations. With this benchmark, we will be able to increase geomorphometric investigations to volcanic islands where little or no high-resolution bathymetry data is available.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...