GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (9)
  • Nature Research  (5)
  • Ernst & Sohn  (4)
  • HWU  (4)
  • IFM-GEOMAR  (3)
  • 1
    Publication Date: 2021-03-19
    Description: Anthropogenic impacts are perturbing the global nitrogen cycle via warming effects and pollutant sources such as chemical fertilizers and burning of fossil fuels. Understanding controls on past nitrogen inventories might improve predictions for future global biogeochemical cycling. Here we show the quantitative reconstruction of deglacial bottom water nitrate concentrations from intermediate depths of the Peruvian upwelling region, using foraminiferal pore density. Deglacial nitrate concentrations correlate strongly with downcore δ13C, consistent with modern water column observations in the intermediate Pacific, facilitating the use of δ13C records as a paleo-nitrate-proxy at intermediate depths and suggesting that the carbon and nitrogen cycles were closely coupled throughout the last deglaciation in the Peruvian upwelling region. Combining the pore density and intermediate Pacific δ13C records shows an elevated nitrate inventory of 〉10% during the Last Glacial Maximum relative to the Holocene, consistent with a δ13C-based and δ15N-based 3D ocean biogeochemical model and previous box modeling studies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: Methane seepage from the upper continental slopes of Western Svalbard has previously been attributed to gas hydrate dissociation induced by anthropogenic warming of ambient bottom waters. Here we show that sediment cores drilled off Prins Karls Foreland contain freshwater from dissociating hydrates. However, our modeling indicates that the observed pore water freshening began around 8 ka BP when the rate of isostatic uplift outpaced eustatic sea-level rise. The resultant local shallowing and lowering of hydrostatic pressure forced gas hydrate dissociation and dissolved chloride depletions consistent with our geochemical analysis. Hence, we propose that hydrate dissociation was triggered by postglacial isostatic rebound rather than anthropogenic warming. Furthermore, we show that methane fluxes from dissociating hydrates were considerably smaller than present methane seepage rates implying that gas hydrates were not a major source of methane to the oceans, but rather acted as a dynamic seal, regulating methane release from deep geological reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-28
    Description: Geochemical data (CH4, SO42−, I−, Cl−, particulate organic carbon (POC), δ13C-CH4, and δ13C-CO2) are presented from the upper 30 m of marine sediment on a tectonic submarine accretionary wedge offshore southwest Taiwan. The sampling stations covered three ridges (Tai-Nan, Yung-An, and Good Weather), each characterized by bottom simulating reflectors, acoustic turbidity, and different types of faulting and anticlines. Sulfate and iodide concentrations varied little from seawater-like values in the upper 1–3 m of sediment at all stations; a feature that is consistent with irrigation of seawater by gas bubbles rising through the soft surface sediments. Below this depth, sulfate was rapidly consumed within 5–10 m by anaerobic oxidation of methane (AOM) at the sulfate-methane transition. Carbon isotopic data imply a mainly biogenic methane source. A numerical transport-reaction model was used to identify the supply pathways of methane and estimate depth-integrated turnover rates at the three ridges. Methane gas ascending from deep layers, facilitated by thrusts and faults, was by far the dominant term in the methane budget at all sites. Differences in the proximity of the sampling sites to the faults and anticlines mainly accounted for the variability in gas fluxes and depth-integrated AOM rates. By comparison, methane produced in situ by POC degradation within the modeled sediment column was unimportant. This study demonstrates that the geochemical trends in the continental margins offshore SW Taiwan are closely related to the different geological settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 29 . pp. 812-829.
    Publication Date: 2017-12-19
    Description: An empirical function is derived for predicting the rate-depth profile of particulate organic carbon (POC) degradation in surface marine sediments including the bioturbated layer. The rate takes the form of a power law analogous to the Middelburg function. The functional parameters were optimized by simulating measured benthic O2 and NO3− fluxes at 185 stations worldwide using a diagenetic model. The novelty of this work rests with the finding that the vertically-resolved POC degradation rate in the bioturbated zone can be determined using a simple function where the POC rain rate is the governing variable. Although imperfect, the model is able to fit 71 % of paired O2 and NO3− fluxes to within 50% of measured values. It further provides realistic geochemical concentration-depth profiles, NO3− penetration depths and apparent first-order POC mineralization rate constants. The model performs less well on the continental shelf due to the high heterogeneity there. When applied to globally resolved maps of rain rate, the model predicts a global denitrification rate of 182 ± 88 Tg yr−1 of N and a POC burial rate of 107 ± 52 Tg yr−1 of C with a mean carbon burial efficiency of 6.1%. These results are in very good agreement with published values. Our proposed function is conceptually simple, requires less parameterization than multi-G type models and is suitable for non-steady state applications. It provides a basis for more accurately simulating benthic nutrient fluxes and carbonate dissolution rates in Earth system models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-29
    Description: Diagenetic processes in surface sediments are important for the burial efficiency of primary produced organic carbon and further interpretation of paleo-environments based on geochemical proxies. Application of numerical models allows the quantitative description of these processes. The models provide a means for evaluating the complex biological and geochemical interactions at the seafloor and allow the computation of organic carbon degradation rates and fluxes. Modeling seasonal variations of early diagenetic processes are promising for an improved understandingof the response of the seafloor to short term natural variations of anthropogenic impacts to this marine environment. Recycling of nutrients or alterations of the redox zonation in the sediment can be predicted by application of numerical models.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Active fluid venting was observed for the first time along the Aleutian convergent margin during RV SONNE cruise 97. These subduction-induced cold vents were subsequently investigated in detail during cruise SO 110 in the summer of 1996 using the Canadian remotely operated vehicle, ROPOS. Active sites of dewatering were found at the youngest deformation structure adjacent to the decollement zone. High concentrations of reduced gases in the escaping fluids provide the nutritional and energy basis for the observed chemosynthetic communities in which clams and tubeworms dominate. Further evidence for fluid venting comes from the mineral precipitates of barite and carbonates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-19
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-12-20
    Description: Plate collision cuases expulsion of fluids and gases and material turnover in the deep ocean along the global subduction zones. Such cold vents are characterized by mineral precipitates and characteristic assemblages of macro organisms. The latter harbor symbiotic bacteria which utilize the chemically-reduced constituents (CH4 and H2S) of the expelled fluids as their energy and supply their host with food. The interaction between tectonically-induced fluid flow and pumping activity of the vent fauna sets up a shallow recirculation system whose magnitude can be estimated from direct measurements by an in situ vent sampling device (VESP) in connection with tracer studies. The dewatering rates based on the biogeochemical estimates agree surprisingly well with those derived from geophysical estimates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-08
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    HWU
    In:  In: Proceedings of the 7th International Conference on Gas Hydrates (ICGH2011). HWU, Edinburgh, 279/1-6.
    Publication Date: 2012-07-06
    Description: Within the German gas hydrate initiative SUGAR, we have developed a new tool for predicting the formation of sub-seafloor gas hydrate deposits. For this purpose, a new 2D/3D module simulating the biogenic generation of methane from organic material and the formation of gas hydrates has been added to the petroleum systems modeling software package PetroMod®. T ypically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components including oil and gas, their migration through geological strata, and finally predicts the oil and gas accumulation in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimeters of spatial extension. As a first test case for validating and improving the abilities of the new hydrate module, the petroleum systems model of the Alaska North Slope developed by IES (currently Shlumberger) and the USGS has been chosen. In this area, gas hydrates have been drilled in several wells, and a field test for hydrate production is planned for 2011/2012. The results of the simulation runs in PetroMod® predicting the thickness of the gas hydrate stability field, the generation and migration of biogenic and thermogenic methane gas, and its accumulation as gas hydrates will be shown during the conference. The predicted distribution of gas hydrates will be discussed in comparison to recent gas hydrate findings in the Alaska North Slope region.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...