GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Copernicus Publications (EGU)  (1)
Document type
Publisher
Years
  • 1
    Publication Date: 2020-02-06
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (i) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (ii) to determine to what degree the chosen analytical approach may affect the resultant δ11B, and (iii) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...