GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-21
    Description: At convergent margins, the structure of the subducting oceanic plate is one of the key factors controlling the morphology of the upper plate. We use high-resolution seafloor mapping and multichannel seismic reflection data along the accretionary Sumatra trench system to investigate the morphotectonic response of the upper plate to the subduction of lower plate fabric. Upper plate segmentation is reflected in varying modes of mass transfer. The deformation front in the southern Enggano segment is characterized by neotectonic formation of a broad and shallow fold-and-thrust belt consistent with the resumption of frontal sediment accretion in the wake of oceanic relief subduction. Conversely, surface erosion increasingly shapes the morphology of the lower slope and accretionary prism towards the north where significant oceanic relief is subducted. Subduction of the Investigator Fracture Zone and the fossil Wharton spreading centre in the Siberut segment exemplifies this. Such features also correlate with an irregularly trending deformation front suggesting active frontal erosion of the upper plate. Lower plate fabric extensively modulates upper plate morphology and the large-scale morphotectonic segmentation of the Sumatra trench system is linked to the subduction of reactivated fracture zones and aseismic ridges of the Wharton Basin. In general, increasing intensity of mass-wasting processes, from south to north, correlates with the extent of oversteepening of the lower slope (lower slope angle of 3.8 degrees in the south compared with 7.6 degrees in the north), probably in response to alternating phases of frontal accretion and sediment underthrusting. Accretionary mechanics thus pose a second-order factor in shaping upper plate morphology near the trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  Natural Hazards and Earth System Sciences, 10 (8). pp. 1759-1780.
    Publication Date: 2019-07-03
    Description: The German-Indonesian Tsunami Early Warning System (GITEWS) aims at reducing the risks posed by events such as the 26 December 2004 Indian Ocean tsunami. To minimize the lead time for tsunami alerts, to avoid false alarms, and to accurately predict tsunami wave heights, real-time observations of ocean bottom pressure from the deep ocean are required. As part of the GITEWS infrastructure, the parallel development of two ocean bottom sensor packages, PACT (Pressure based Acoustically Coupled Tsunameter) and OBU (Ocean Bottom Unit), was initiated. The sensor package requirements included bidirectional acoustic links between the bottom sensor packages and the hosting surface buoys, which are moored nearby. Furthermore, compatibility between these sensor systems and the overall GITEWS data-flow structure and command hierarchy was mandatory. While PACT aims at providing highly reliable, long term bottom pressure data only, OBU is based on ocean bottom seismometers to concurrently record sea-floor motion, necessitating highest data rates. This paper presents the technical design of PACT, OBU and the HydroAcoustic Modem (HAM.node) which is used by both systems, along with first results from instrument deployments off Indonesia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Earthquake history shows that the Sunda subduction zone of the Indonesian margin produces great earthquakes offshore Sumatra, whereas earthquakes of comparable magnitude are lacking offshore Java and the Lesser Sunda islands. Morphological structures in multibeam bathymetric data across the forearc relate with the extent of the seismogenic zone. Its updip limit corresponds to the slope break, most distinct off Java and Lesser Sunda islands, where we find coincident narrow, uniform, continuous outer arc ridges. Their landward termination and a shallow upper plate mantle mark the downdip limit of the seismogenic zone. In contrast the outer arc ridges off Sumatra are wider and partly elevated above sea level forming the forearc islands. The downdip limit of the seismogenic zone coincides with a deeper upper plate mantle. Sunda Strait marks a transition zone between the Sumatra and Java margins. We find the differences along the Sunda margin, especially the wider extent of the seismogenic zone off Sumatra, producing larger earthquakes, to result from the interaction of different age and subduction direction of the oceanic plate. We attribute a major role to the sediment income and continental/oceanic upper plate nature of Sumatra/Java influencing the composition and deformation style along the forearc and subduction fault.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-17
    Description: Active seismic investigations along the Pacific margin off Peru were carried out using ocean bottom hydrophones and seismometers. The structure and the P-wave velocities of the obliquely subducting oceanic Nazca Plate and overriding South American Plate from 8°S to 15°S were determined by modelling the wide-angle seismic data combined with the analysis of reflection seismic data. Three detailed cross-sections of the subduction zone of the Peruvian margin and one strike-line across the Lima Basin are presented here. The oceanic crust of the Nazca Plate, with a thin pelagic sediment cover, ranging from 0–200 m, has an average thickness of 6.4 km. At 8°S it thins to 4 km in the area of Trujillo Trough, a graben-like structure. Across the margin, the plate boundary can be traced to 25 km depth. As inferred from the velocity models, a frontal prism exists adjacent to the trench axis and is associated with the steep lower slope. Terrigeneous sediments are proposed to be transported downslope due to gravitational forces and comprise the frontal prism, characterized by low seismic P-wave velocities. The lower slope material accretes against a backstop structure, which is defined by higher seismic P-wave velocities, 3.5–6.0 km s−1. The large variations in surface slope along one transect may reflect basal removal of upper plate material, thus steepening the slope surface. Subduction processes along the Peruvian margin are dominated by tectonic erosion indicated by the large margin taper, the shape and bending of the subducting slab, laterally varying slope angles and the material properties of the overriding continental plate. The erosional mechanisms, frontal and basal erosion, result in the steepening of the slope and consequent slope failure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-07-10
    Description: Wide-angle seismic data have been used to determine the velocity and density structure of the crust and uppermost mantle beneath the Cape Verdes mid-plate swell. Seismic modelling reveals a ‘standard’ oceanic crust, ∼8 km in thickness, with no direct evidence for low-density bodies at the base of the crust. Gravity anomaly modelling within the constraints and resolution provided by the seismic model, does not preclude, however, a layer of crustal underplate up to 3 km thick beneath the swell crest. The modelling shows that while the seismically constrained crustal structure accounts for the short-wavelength free-air gravity anomaly, it fails to fully explain the long-wavelength anomaly. The main discrepancy is over the swell crest where the gravity anomaly, after correcting for crustal structure, is higher by about 30 mGal than it is over its flanks. The higher gravity can be explained if the top 100 km of the mantle beneath the swell crest is less dense than its surroundings by 30 kg m−3. The lack of evidence for low densities and velocities in the uppermost mantle, and high densities and velocities in the lower crust, suggests that neither a depleted swell root or crustal underplate are the origin of the observed shallower-than-predicted bathymetry and that, instead, the swell is most likely supported by dynamic uplift associated with an anomalously low density asthenospheric mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: We study the structure and tectonics of the collision zone between the Nazca Ridge (NR) and the Peruvian margin constrained by seismic, gravimetric, bathymetric, and natural seismological data. The NR was formed in an on-ridge setting, and it is characterized by a smooth and broad shallow seafloor (swell) with an estimated buoyancy flux of ~7 Mg/s. The seismic results show that the NR hosts an oceanic lower crust 10–14 km thick with velocities of 7.2–7.5 km/s suggesting intrusion of magmatic material from the hot spot plume to the oceanic plate. Our results show evidence for subduction erosion in the frontal part of the margin likely enhanced by the collision of the NR. The ridge-trench collision zone correlates with the presence of a prominent normal scarp, a narrow continental slope, and (uplifted) shelf. In contrast, adjacent of the collision zone, the slope does not present a topographic scarp and the continental slope and shelf become wider and deeper. Geophysical and geodetic evidence indicate that the collision zone is characterized by low seismic coupling at the plate interface. This is consistent with vigorous subduction erosion enhanced by the subducting NR causing abrasion and increase of fluid pore pressure at the interplate contact. Furthermore, the NR has behaved as a barrier for rupture propagation of megathrust earthquakes (e.g., 1746 Mw 8.6 and 1942 Mw 8.1 events). In contrast, for moderate earthquakes (e.g., 1996 Mw 7.7 and 2011 Mw 6.9 events), the NR has behaved as a seismic asperity nucleating at depths 〉20 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-13
    Description: Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s〈SU-1〈/SU decrease seaward to around 4.5 km s〈SU-1〈/SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The giant tsunami that swept the Pacific from Alaska to Antarctica in 1946, was generated along one of three Alaska Trench instrumentally recorded aftershock areas following great and giant earthquakes. Aftershock areas were investigated during the past decade with multibeam bathymetry, OBS wide‐angle seismic, reprocessed legacy and new seismic reflection images. Summarized and updated here are previous papers and additional data. Tectonic structures collocated with aftershock area boundaries indicate possible lengths of rupture in future great earthquakes. NE aftershock area boundaries relate to subducted lower plate structures whereas the SW zone upper plate retains Beringian structural relicts. The lower to middle slope transition separating a stronger continental framework rock from a weaker accreted prism occurs along splay fault zones previously interpreted as backstops in seismic images. Damage zones along splay faults are generally 1 km wide dipping typically 21°. Splays form slip paths from the plate interface to the seafloor much shorter than the 3° to 4° dipping plate interface beneath the frontal prism. Associated seafloor vent structures indicate overpressured fluids at depth. Splay fault dip and its rigid hanging wall impart greater seafloor uplift than the accreted prism per unit of slip making them effective tsunami generators. Backstop splay fault zones run along the entire Alaska Trench. Beneath the frontal prism, active bend faults add rugosity to the plate interface and km high relief is commonly imaged in reprocessed legacy and new seismic data. The 1946 Unimak great (M8.6) earthquake epicenter is located near the backstop splay fault zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-14
    Description: The Nazca Ridge (NR) was formed near the interaction of a hotspot mantle plume and an active spreading center. We use active-source wide-angle seismic data to obtain 2-D Vp and Vs tomographic models, and hence the Poisson's ratio (ν) structure beneath the NR. Results show a ∼2 km thick seismic layer 2A with ν values of 0.25–0.32 in the uppermost crust interpreted as pillow basalts with a low degree of fracturing and/or hydrothermal alteration. The 2A/B boundary layer presents ν values of 0.27–0.29 consistent with pillow basalts/sheeted dykes units. A ∼3 km layer 2B overlies a ∼10 km layer 3 with ν values of 0.24–0.3 at the 2/3 boundary layer. The lowermost layer 3 presents ν values of 0.28 ± 0.02 suggesting an increase in Mg content (≥10% wt). The NR crust (∼15 km thick) requires an increment of the asthenospheric mantle potential temperature in ∼100°C formed by passive adiabatic decompression melting.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...