GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Environmental chemistry ; Environmental Chemistry ; Catalysis ; Pollution prevention ; Analytical chemistry ; Electrochemistry
    Description / Table of Contents: Preface -- 1. Use of carbon dioxide in polymer synthesis (Annalisa Abdel Azim, Alessandro Cordara, Beatrice Battaglino, Angela Re) -- 2. Biological conversion of carbon dioxide into volatile organic compounds (Ihana Aguiar Severo, Pricila Nass Pinheiro, Karem Rodrigues Vieira, Leila Queiroz Zepka, Eduardo Jacob-Lopes) -- 3. Application of metal organic frameworks in carbon dioxide conversion to methanol (Tamer Zaki) -- 4. Conversion of Carbon Dioxide into Formic Acid (Umesh Fegade and Ganesh Jethave) -- 5. Selective hydrogenation of carbon dioxide into methanol (Pham Minh, Roger, Parkhomenko, L'Hospital, Rego de Vasconcelos, Ro, Mahajan, Chen, Singh, N. Vo) -- 6. Conversion of carbon dioxide into formaldehyde (Trinh Duy Nguyen, Thuan Van Tran, Sharanjit Singh, Pham T. T. Phuong, Long Giang Bach, Sonil Nanda, Dai-Viet N. Vo) -- 7. A Short Review on Production of Syngas via Glycerol Dry Reforming (Sumaiya Zainal Abidin, Asmida Ideris, Nurul Ainirazali, Mazni Ismail)
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XI, 202 p. 45 illus., 28 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030286385
    Series Statement: Environmental Chemistry for a Sustainable World 41
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Waste disposal ; Waste Management/Waste Technology ; Chemical engineering ; Environmental management ; Waste management.
    Description / Table of Contents: 1. Solution and Challenges in recycling waste cathode-ray tube -- 2. Reconfigurable recycling systems of e-waste -- 3. An Economic Assessment of Present and Future Electronic Waste Streams: Japan’s Experience -- 4. Recent technologies in electronic waste management -- 5. Recycling challenges for electronic consumer products to e-waste: A developing countries perspective -- 6. Chemical recycling of electronic waste for clean fuel production -- 7. Management of electrical and electronic equipment in European Union countries: a comparison -- 8. E-waste management from macroscopic to microscopic scale -- 9. Recycling processes for the recovery of metal from e-waste of the LED industry -- 10. E-waste management and the conservation of geochemical scarce resources -- 11. Sustainable electronic waste management: Implications on environmental and human health -- 12. E-waste and their implications on the environmental and human health
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 235 p. 57 illus., 29 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030141844
    Series Statement: Environmental Chemistry for a Sustainable World 33
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Environmental Medicine ; Environmental pollution ; Analytical biochemistry ; Environmental chemistry ; Environmental Chemistry ; Environmental health. ; Water pollution. ; Analytical chemistry.
    Description / Table of Contents: 1. Role of nano-photocatalysis in heavy metal detoxification -- 2. Solar photocatalysis applications to antibiotic degradation in aquatic systems -- 3. Biomass-based photocatalysts for environmental applications -- 4. Role of nano-photocatalysis in heavy metal detoxification -- 5. Phosphors-based photocatalysts for wastewater treatment -- 6. Nanocarbons and Polymers Supported TiO2 Nanostructures as Efficient Photocatalysts for Remediation of Contaminated -- 7. Wastewater and Hydrogen Production -- 8. Investigation in sono-photocatalysis process using doped-catalyst and ferrite nanoparticles for wastewater treatment -- 9. Magnetic-based photocatalyst for antibacterial application and catalytic performance -- 10. Antimicrobial activities of photocatalysts to water disinfection -- 11. Medicinal Applications of Photocatalysts
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 269 p. 68 illus., 32 illus. in color)
    Edition: 1st ed. 2020
    ISBN: 9783030126193
    Series Statement: Environmental Chemistry for a Sustainable World 30
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: Surveys recent advances in conducting polymers and their composites. Chapters address synthetic approaches, and applications in all types of electrochemical energy storage devices and next-generation devices. Evaluates the execution of these materials as electrodes in electrochemical power sources.
    Type of Medium: Online Resource
    Pages: 1 online resource (353 pages)
    Edition: 1st ed.
    ISBN: 9780429510885
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Contributors -- Editors -- Chapter 1. Polythiophene-Based Battery Applications -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Electrochemical Polymerization -- 1.2.2 Chemical Synthesis -- 1.3 Battery Applications of PTs -- 1.3.1 PTs as Cathodic Materials -- 1.3.1.1 PTs as Active Materials -- 1.3.1.2 PTs as Binder -- 1.3.1.3 PTs as Conduction-Promoting Agents -- 1.3.2 PTs as Air Cathode -- 1.3.2.1 Li-Air Batteries -- 1.3.2.2 Aluminum-Air Battery -- 1.3.2.3 Zinc-Air Battery -- 1.3.3 PTs as Anodic Materials -- 1.3.3.1 PTs as Active Materials for Anode -- 1.3.3.2 PTs as Binders -- 1.3.3.3 PTs as Conduction Promoting Agents (CPAs) -- 1.3.4 PTs as Battery Separators -- 1.3.4.1 Li-Ion Batteries -- 1.3.4.2 Li-S Batteries -- 1.3.4.3 Li-O2 Batteries -- 1.3.5 PTs as Electrolytes -- 1.3.6 PTs as Coin-cell Cases -- 1.3.7 PTs as Li-O2 Catalyst -- 1.4 Conclusion -- References -- Chapter 2. Synthetic Strategies and Significant Issues for Pristine Conducting Polymers -- 2.1 Introduction -- 2.2 Conduction Mechanism -- 2.3 Synthesis of Conducting Polymers -- 2.3.1 Synthesis through Polymerization -- 2.3.1.1 Chain-Growth Polymerization -- 2.3.1.2 Step-Growth Polymerization -- 2.3.2 Synthesis by Doping with Compatible Dopants -- 2.3.2.1 Types of Doping Agents -- 2.3.2.2 Doping Techniques -- 2.3.2.3 Mechanism of Doping -- 2.3.2.4 Influence of Doping on Conductivity -- 2.3.3 Electrochemical Polymerization -- 2.3.4 Photochemical Synthesis -- 2.4 Various Issues for Synthesis -- 2.4.1 Vapor-Phase Polymerization -- 2.4.2 Hybrid Conducting Polymers -- 2.4.3 Nanostructure Conducting Polymers -- 2.4.4 Narrow Bandgap Conducting Polymers -- 2.4.5 Synthesis in Supercritical CO2 -- 2.4.6 Biodegradability and Biocompatibility of Conducting Polymers -- 2.5 Applications. , 2.6 Future Scope for Applications -- 2.7 Conclusions -- Abbreviations -- References -- Chapter 3. Conducting Polymer Derived Materials for Batteries -- 3.1 Introduction -- 3.2 Theory -- 3.3 Discussion on Conducting Polymer-Derived Materials -- 3.3.1 PEDOT Derivatives -- 3.3.1.1 Structural Properties -- 3.3.1.2 Electrochemical Studies of PEDOT and Its Derivatives -- 3.3.1.3 Magnetic Properties -- 3.3.2 PPy for the Energy-Storage Devices -- 3.3.2.1 Structural Property of PPy -- 3.3.2.2 Electrochemical Properties of Polypyrrol -- 3.3.2.3 Magnetic Properties -- 3.3.3 PANI for Battery Application -- 3.3.3.1 Structural Properties -- 3.3.3.2 Electrochemical Properties of PANI for Battery Electrode -- 3.3.3.3 Magnetic Properties of PANI -- 3.4 Summary and Conclusions -- References -- Chapter 4. An Overview on Conducting Polymer-Based Materials for Battery Application -- 4.1 Introduction -- 4.2 Principle of Conducting Polymer Battery -- 4.3 Assortment of Conducting Polymer Electrodes for Battery Application -- 4.4 Mechanism of Conducting Polymers in Rechargeable Batteries -- 4.5 Organic Conducting Polymer for Lithium-ion Battery -- 4.5.1 Types of Organic Conducting Polymers -- 4.6 Synthesis of Conducting Polymer -- 4.6.1 Hard-template Method -- 4.6.2 Soft-template Method -- 4.6.3 Template-free Technique -- 4.6.4 Self-Assembly or Interfacial -- 4.6.5 Electrospinning -- 4.7 Characterization -- 4.7.1 Surface Characterization by AFM and AFMIR -- 4.7.2 Transmission Electron Microscopy -- 4.7.3 Electrochemical Characterization -- 4.8 Applications of Various Conducting Polymers in Battery -- 4.8.1 Polyacetylene Battery -- 4.8.2 Polyaniline Batteries -- 4.8.3 Poly (p-phenylene) Batteries -- 4.8.4 Heterocyclic Polymer Batteries -- 4.9 Summary and Outlook -- References -- Chapter 5. Polymer-Based Binary Nanocomposites -- 5.1 Introduction -- 5.2 Binary Composites. , 5.3 Nanostructured CPs -- 5.4 Strategies to Improve Performance -- 5.4.1 Low-dimensional Capacitors -- 5.4.2 Hybrid Capacitors -- 5.4.2.1 Hybrid Electrode Material -- 5.5 CP/Carbon-based Binary Composite -- 5.6 CP/Metal Oxides Binary Composites -- 5.7 CP/Metal Sulfides Binary Complexes -- 5.8 Other Cp-supported Binary Complexes -- 5.9 Conclusion -- References -- Chapter 6. Polyaniline-Based Supercapacitor Applications -- 6.1 Introduction -- 6.2 Polyaniline (PANI) and Its Application Potential -- 6.3 Supercapacitors -- 6.3.1 PANI in Supercapacitors -- 6.3.2 PANI and Carbon Composites -- 6.3.3 PANI/Porous and Carbon Composites -- 6.3.4 PANI/Graphene Composites -- 6.3.5 PANI/CNTs Composites -- 6.3.6 Polyaniline Activation/Carbonization -- 6.3.7 Composites of Polyaniline with Various Conductive Polymer Blends -- 6.3.8 Composites of Polyaniline with Transition Metal Oxides -- 6.3.9 Composites of Polyaniline Core-Shells with Metal Oxides -- 6.3.10 PANI-modified Cathode Materials -- 6.3.11 PANI-modified Anode Materials -- 6.4 Redox-active Electrolytes for PANI Supercapacitors -- 6.5 Examples of Various Polyaniline-based Supercapacitor -- 6.5.1 Composites of Polyaniline Doped with CoCl2 as Materials for Electrodes -- 6.5.2 Composites of Polyaniline Nanofibers with Graphene as materials for electrodes -- 6.5.3 Composites of Polyaniline (PANI) with Graphene Oxide as Electrode Materials -- 6.5.4 Hybrid Films of Manganese Dioxide and Polyaniline as Electrode Materials -- 6.5.5 Composites of Activated Carbon/Polyaniline with Tungsten Trioxide as Electrode Materials -- 6.5.6 PANI- and MOF-based Flexible Solid-state Supercapacitors -- 6.5.7 Polyaniline-based Nickel Electrodes for Electrochemical Supercapacitors -- 6.5.8 Hydrogel of Ultrathin Pure Polyaniline Nanofibers in Supercapacitor Application -- Conclusion -- Acknowledgements -- References. , Chapter 7. Conductive Polymer-derived Materials for Supercapacitor -- 7.1 Introduction -- 7.2 Types of Supercapacitor -- 7.3 Parameters of Supercapacitors -- 7.4 Conducting Polymers (CPs) as Electrode Materials -- 7.4.1 Class of Conducting Polymer as Supercapacitor Electrode -- 7.5 Polyaniline (PANI)-based Electrode -- 7.6 Polypyrrole (PPy)-based Electrode -- 7.7 Polythiophene (PTh)-based Electrode -- 7.8 Conclusions -- Acknowledgement -- References -- Chapter 8. Conducting Polymer-Metal Based Binary Composites for Battery Applications -- 8.1 Conducting polymer (CPs) -- 8.2 Conducting polymers conductivity -- 8.3 Conducting polymer composites -- 8.3.1 Metal center nanoparticles -- 8.3.2 Metal nanoparticles -- 8.4 Conducting Polymer Based Binary Composites -- 8.4.1 Metal Matrix Composites (MMC) -- 8.4.2 Poly (Thiophene) composite -- 8.4.3 Poly (Para-Phenylene Vinylene) composite -- 8.4.4 Poly (Carbazole) composite -- 8.4.5 Vanadium oxide based conducting composite -- 8.4.6 PANI-V2O5 composite -- 8.4.7 Poly(N-sulfo propyl aniline)-V2O5 composite -- 8.5 Conducting polymer composite battery applications -- 8.5.1 Conducting polymer composite for Lithium-ion (Li+) based battery -- 8.5.2 Conducting polymer composites for Sodium-ion (Na+) based Battery -- 8.5.3 Conducting Polymer composite for Mg-Ion (Mg+2) Based Battery -- 8.6 Conducting polymer based composites for electrode materials -- References -- Chapter 9. Novel Conducting Polymer-Based Battery Application -- 9.1 Conducting Polymers (CPs) -- 9.1.1 Poly(Acetylene) -- 9.1.2 Poly(Thiophene) -- 9.1.3 Poly(Aniline) -- 9.1.4 Poly(Pyrrole) -- 9.1.5 Poly(Paraphenylene) and Poly(Phenylene) -- 9.2 Battery Applications of Conducting Polymers -- 9.2.1 Lithium Sulfide batteries -- 9.2.2 Binder for Lithium sulfide battery cathode -- 9.2.3 Sulfur encapsulation for electrode materials. , 9.2.4 Sulfur Encapsulation through Conductive Polymers -- 9.2.5 Conducting polymer anodes for Lithium sulfide battery -- 9.2.6 Conducting polymer as materials interlayer -- 9.3 Li+-ion-based Battery Applications of Conducting Polymers -- 9.4 Na+- ion-based Battery Applications of Conducting Polymers -- 9.5 Mg+2-ion-based Battery Applications of Conducting Polymers -- References -- Chapter 10. Conducting Polymer-Carbon-Based Binary Composites for Battery Applications -- Abbreviations -- 10.1 Introduction -- 10.2 Batteries -- 10.2.1 Types of Batteries -- 10.2.2 Electrode Materials -- 10.3 Conducting Polymer-Carbon-Based Binary Composite in Battery Applications -- 10.3.1 Polyaniline PANI-Carbon-Based Composite -- 10.3.2 Polypyrrole (PPy)-Carbon-Based Composite -- 10.3.3 Poly(3,4-ethylenedioxythiophene) (PEDOT)-Carbon-Based Composite -- 10.3.4 Others Conducting Polymer-Carbon-Based Composite -- 10.4 Conclusions -- Acknowledgements -- References -- Chapter 11. Polyethylenedioxythiophene-Based Battery Applications -- 11.1 Chemistry of PEDOT -- 11.1.1 PEDOT Synthesis and Morphology -- 11.1.1.1 Synthetic Techniques to Achieve Desired Morphologies -- 11.1.2 PEDOT-Based Nanocomposites -- 11.2 PEDOT-Based Polymers in Lithium-Sulfur Batteries -- 11.3 Lithium-Air Battery Based on PEDOT or PEDOT:PSS -- 11.3.1 PEDOT-Based Nanocomposites for Li-O2 Batteries -- 11.3.2 PEDOT:PSS-Based Li-O2 Battery Cathodes -- 11.4 Lithium and Alkali Ion Polythiophene Batteries -- 11.4.1 Cathodes -- 11.4.1.1 Cathode Binders and Composites -- 11.4.2 Anodes -- 11.4.2.1 Anode Binders and Composites -- 11.4.3 All-Polythiophene and Metal-Free Batteries -- References -- Chapter 12. Polythiophene-Based Supercapacitor Applications -- 12.1 Introduction -- 12.2 Properties of Polythiophene (PTh) -- 12.3 Synthesis of Polythiophene -- 12.4 Charge Storage in Polythiophene Electrochemical Capacitors. , 12.5 Polythiophene Electrode Fabrication.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Porous materials. ; Electronic books.
    Description / Table of Contents: Internationally assembled experts in the field describe developments and advances in synthesis, tuning parameters, and applications of porous polymers. Chapter topics span basic studies, novel issues, and applications addressing all aspects in a one-stop reference on porous polymers.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9781000567168
    DDC: 547/.7
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Editors -- Contributors -- Chapter 1: Introduction to Porous Polymers -- 1.1 Introduction -- 1.2 Types of Porous Polymers -- 1.3 Synthetic Methods for Porous Polymer Network -- 1.4 Conclusion -- References -- Chapter 2: Hyper-crosslinked Polymers -- 2.1 Introduction -- 2.1.1 Overview -- 2.1.2 Porous Polymer -- 2.1.3 Crosslinking -- 2.2 Hyper-crosslinked Polymers -- 2.3 Synthesis Methods of HCPs -- 2.3.1 Post-crosslinking Polymer Precursors -- 2.3.2 Direct One-Step Polycondensation -- 2.3.3 Knitting Rigid Aromatic Building Blocks by External Crosslinkers -- 2.4 Structure and Morphology of HCPs -- 2.4.1 Nanoparticles -- 2.4.2 Hollow Capsules -- 2.4.3 2D Membranes -- 2.4.4 Monoliths -- 2.5 HCPs Properties -- 2.5.1 Polymer Surface -- 2.5.1.1 Hydrophilicity -- 2.5.1.2 Hydrophobicity -- 2.5.1.3 Amphiphilicity -- 2.5.2 Porosity and Surface Area -- 2.5.3 Swelling Behavior -- 2.5.4 Thermomechanical Properties -- 2.6 Functionalization of HCPs -- 2.7 Characterization of HCPs -- 2.7.1 Compositional and Structural Characterization -- 2.7.2 Morphological Characterization -- 2.7.3 Porosity and Surface Area Analysis -- 2.7.4 Other Analysis -- 2.8 Applications -- 2.8.1 Storage Capacity -- 2.8.1.1 Storage of Hydrogen -- 2.8.1.2 Storage of Methane -- 2.8.1.3 CO 2 Capture -- 2.8.2 Environmental Remediation -- 2.8.3 Heterogeneous Catalysis -- 2.8.4 Drug Delivery -- 2.8.5 Sensing -- 2.8.6 Other Applications -- 2.9 Conclusion -- References -- Chapter 3: Porous Ionic Polymers -- 3.1 Introduction: A Distinctive Feature of the Porous Structure of Ionic Polymers -- 3.2 Ionic Polymers in Dry State -- 3.3 Ionic Polymers in Swollen State: Hsu-Gierke Model -- 3.4 Modifications of Hsu-Gierke Model: Hydration of Ion Exchange Polymers. , 3.5 Methods for Research of Porous Structure of Ionic Polymers -- 3.5.1 Nitrogen Adsorption-Desorption -- 3.5.2 Mercury Intrusion -- 3.5.3 Adsorption-Desorption of Water Vapor -- 3.5.4 Differential Scanning Calorimetry -- 3.5.5 Standard Contact Porosimetry -- 3.6 Conclusions -- References -- Chapter 4: Analysis of Qualitative and Quantitative Criteria of Porous Plastics -- 4.1 Introduction -- 4.2 Sorting of Porous Polymers -- 4.2.1 Macroporous Polymers -- 4.2.2 Microporous Polymers -- 4.2.3 Mesoporous Polymers -- 4.3 Methodology -- 4.3.1 AHP Analysis -- 4.4 Conclusions -- References -- Chapter 5: Novel Research on Porous Polymers Using High Pressure Technology -- 5.1 Background -- 5.2 Porous Polymers Based on Natural Polysaccharides -- 5.3 Parameters Involved in the Porous Polymers Processing by High Pressure -- 5.4 Supercritical Fluid Drying for Porous Polymers Processing -- 5.5 Porous Polymers for Foaming and Scaffolds by Supercritical Technology -- 5.6 Supercritical CO 2 Impregnation in Porous Polymers for Food Packaging -- 5.7 Synthesis of Porous Polymers by Supercritical Emulsion Templating -- 5.8 Porous Polymers as Supports for Catalysts Materials by Supercritical Fluid -- 5.9 Porous Metal-Organic Frameworks Polymers by Supercritical Fluid Processing -- 5.10 Concluding Remarks -- Acknowledgments -- References -- Chapter 6: Porous Polymer for Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Stability and Functionalization of POPs -- 6.3 Strategies for Synthesizing POP Catalyst -- 6.3.1 Co-polymerization -- 6.3.1.1 Acidic and Basic Groups -- 6.3.1.2 Ionic Groups -- 6.3.1.3 Ligand Groups -- 6.3.1.4 Chiral Groups -- 6.3.1.5 Porphyrin Group -- 6.3.2 Self-polymerization -- 6.3.2.1 Organic Ligand Groups -- 6.3.2.2 Organocatalyst Groups -- 6.3.2.3 Ionic Groups -- 6.3.2.4 Chiral Ligand Groups -- 6.3.2.5 Porphyrin Groups. , 6.4 Applications of Various Porous Polymers -- 6.4.1 CO 2 Capture and Utilization -- 6.4.1.1 Ionic Liquid/Zn-PPh 3 Integrated POP -- 6.4.1.1.1 Mechanism of the Cycloaddition Reaction -- 6.4.1.2 Triphenylphosphine-based POP -- 6.4.2 Energy Storage -- 6.4.3 Heterogeneous Catalysis -- 6.4.3.1 Cu(II) Complex on Pyridine-based POP for Nitroarene Reduction -- 6.4.3.2 POP-supported Rhodium for Hydroformylation of Olefins -- 6.4.3.3 Ni(II)-metallated POP for Suzuki-Miyaura Crosscoupling Reaction -- 6.4.3.4 Ru-loaded POP for Decomposition of Formic Acid to H 2 -- 6.4.3.5 Porphyrin-based POP to Support Mn Heterogeneous Catalysts for Selective Oxidation of Alcohols -- 6.4.3.5.1 Mechanism of the Oxidation of Alcohols by TFP-DPMs -- 6.4.4 Photocatalysis -- 6.4.4.1 Conjugated Porous Polymer Based on Phenanthrene Units -- 6.4.4.2 (dipyrrin)(bipyridine)ruthenium(II) Visible Light Photocatalyst -- 6.4.4.3 Carbazole-based CMPs for C-3 Functionalization of Indoles -- 6.4.4.3.1 Mechanism of C-3 Formylation of N-methylindole by CMP-CSU6 Polymer Catalyst -- 6.4.4.3.2 The Mechanism for C-3 Thiocyanation of 1H-indole -- 6.4.5 Electrocatalysis -- 6.4.5.1 Redox-active N-containing CPP for Oxygen Reduction Reaction (ORR) -- References -- Chapter 7: Triazine Porous Frameworks -- 7.1 Introduction -- 7.2 Synthetic Procedures of CTFs and Their Structural Designs -- 7.2.1 Ionothermal Trimerization Strategy -- 7.2.2 High Temperature Phosphorus Pentoxide (P 2 O 5)-Catalyzed Method -- 7.2.3 Amidine-based Polycondensation Methods -- 7.2.4 Superacid Catalyzed Method -- 7.2.5 Friedel-Crafts Reaction Method -- 7.3 Applications of CTFs -- 7.3.1 Adsorption and Separation -- 7.3.1.1 CO 2 Capture and Separation -- 7.3.1.2 The Removal of Pollutants -- 7.3.2 Heterogeneous Catalysis -- 7.3.3 Applications for Energy Storage and Conversion -- 7.3.3.1 Metal-Ion Batteries -- 7.3.3.2 Supercapacitors. , 7.3.4 Electrocatalysis -- 7.3.5 Photocatalysis -- 7.3.6 Other Applications of CTFs -- References -- Chapter 8: Advanced Separation Applications of Porous Polymers -- 8.1 Introduction -- 8.2 Advanced Separation Applications -- 8.3 Separation through Adsorption -- 8.4 Water Treatment -- 8.5 Conclusion -- Abbreviations -- References -- Chapter 9: Porous Polymers for Membrane Applications -- 9.1 Introduction -- 9.2 Introduction to Synthesis of Porous Polymeric Particles -- 9.3 Preparation of Porous Polymeric Membrane -- 9.4 Morphology of Membrane and Its Parameters -- 9.5 Emerging Applications of Porous Polymer Membranes -- 9.6 Polysulfone and Polyvinylidene Fluoride Used as Porous Polymers for Membrane Application -- 9.6.1 Polysulfone Membranes -- 9.6.2 Polyvinylidene Fluoride Membranes -- 9.7 Use of Porous Polymeric Membranes for Sensing Application -- 9.8 Use of Porous Polymeric Electrolytic Membranes Application -- 9.9 Use of Porous Polymeric Membrane for Numerical Modeling and Optimization -- 9.10 Use of Porous Polymers for Biomedical Application -- 9.11 Use of Porous Polymeric Membrane in Tissue Engineering -- 9.12 Use of Porous Polymeric Membrane in Wastewater Treatment -- 9.13 Use of Porous Polymeric Membrane for Dye Rejection Application -- 9.14 Porous Polymeric Membrane Antifouling Application -- 9.15 Porous Polymeric Membrane Used for Fuel Cell Application -- 9.16 Conclusion -- References -- Chapter 10: Porous Polymers in Solar Cells -- 10.1 Introduction -- 10.1.1 Si-based Solar Cells -- 10.1.2 Thin-film Solar Cells -- 10.1.3 Organic Solar Cells -- 10.2 Porous Polymers in DSSCs -- 10.2.1 Porous Polymers in Electrodes -- 10.2.2 Porous Polymer as a Counter Electrode -- 10.2.3 Porous Polymers in TiO 2 Photoanode -- 10.2.4 Porous Polymers in Electrolyte -- 10.2.5 Porous Polymer as Energy Conversion Film. , 10.2.5.1 Polyvinylidene Fluoride-co-Hexafluoropropylene (PVDF-HFP) Membranes -- 10.2.5.2 Pyridine-based CMPs Aerogels (PCMPAs) -- 10.2.6 Porous Polymers in Coating of Solar Cell -- 10.2.7 Porous Polymers as Photocatalyst or Electrocatalyst -- 10.3 Perovskite Solar Cells -- 10.3.1 Porous Polymers in Electron Transport Layers -- 10.3.2 Porous Polymers in Hole Transport Layers -- 10.3.3 Porous Polymer as Energy Conversion Film -- 10.3.4 Porous Polymers as Interlayers -- 10.3.5 Porous Polymers in Morphology Regulations -- 10.4 Porous Polymers in Silicon Solar Cell -- 10.5 Miscellaneous -- 10.5.1 Porous Polymers in Solar Evaporators -- 10.5.2 Charge Separation Systems in Solar Cells -- 10.5.3 Porous Polymers in ZnO Photoanode -- 10.6 Conclusions -- References -- Chapter 11: Porous Polymers for Hydrogen Production -- 11.1 Introduction -- 11.1.1 Approaches Utilized for the Generation of Porous Polymers (PPs) -- 11.1.1.1 Infiltration -- 11.1.1.2 Layer-by-Layer Assembly (LbL) -- 11.1.1.3 Conventional Polymerization -- 11.1.1.4 Electrochemical Polymerization -- 11.1.1.5 Controlled/Living Polymerization (CLP) -- 11.1.1.6 Macromolecular Design -- 11.1.1.7 Self-assembly -- 11.1.1.8 Phase Separation -- 11.1.1.9 Solid and Liquid Templating -- 11.1.1.10 Foaming -- 11.2 Various Porous Polymers for H 2 Production -- 11.2.1 Photocatalysts Based on Conjugated Microporous Polymers -- 11.2.2 Conjugated Microporous Polymers -- 11.2.3 Porous Conjugated Polymer (PCP) -- 11.2.4 Membrane Reactor -- 11.2.5 Paper-Structured Catalyst with Porous Fiber-Network Microstructure -- 11.2.6 Porous Organic Polymers (POPs) -- 11.2.7 PEM Water Electrolysis -- 11.2.8 Microporous Inorganic Membranes -- 11.2.9 Hybrid Porous Solids for Hydrogen Evolution -- 11.3 Other Alternatives for Hydrogen Production -- 11.3.1 Metal-Organic Frameworks (MOFs) -- 11.3.2 Covalent Organic Frameworks. , 11.3.3 Photochemical Device.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Raw materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (237 pages)
    Edition: 1st ed.
    ISBN: 9781000596465
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Graphene from Sugar and Sugarcane Extract: Synthesis, Characterization, and Applications -- Chapter 2: Graphene from Honey -- Chapter 3: Graphene from Animal Waste -- Chapter 4: Graphene from Essential Oils -- Chapter 5: Synthesis of Graphene from Biowastes -- Chapter 6: Graphene from Rice Husk -- Chapter 7: Synthesis of Graphene from Vegetable Waste -- Chapter 8: Graphene Oxide from Natural Products and Its Applications in the Agriculture and Food Industry -- Chapter 9: Graphene from Sugarcane Bagasse: Synthesis, Characterization, and Applications -- Chapter 10: Graphene Synthesis, Characterization and Applications -- Chapter 11: Graphene from Leaf Wastes -- Chapter 12: Biosynthesis of Reduced Graphene Oxide and Its Functionality as an Antibacterial Template -- Chapter 13: Graphene and Its Composite for Supercapacitor Applications -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Semiconductors-Optical properties. ; Electronic books.
    Description / Table of Contents: This comprehensive reference describes the classifications, optical properties and applications of semiconductors. Accomplished experts in the field share their knowledge and examine new developments. This is an invaluable resource for engineers, scientists, academics and Industry R&D teams working in applied physics.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781000598957
    DDC: 537.6/226
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: Semiconductor Optical Fibers -- Chapter 2: Optical Properties of Semiconducting Materials for Solar Photocatalysis -- Chapter 3: Semiconductor Optical Memory Devices -- Chapter 4: Semiconductor Optical Utilization in Agriculture -- Chapter 5: Nonlinear Optical Properties of Semiconductors, Principles, and Applications -- Chapter 6: Semiconductor Photoresistors -- Chapter 7: Semiconductor Photovoltaic -- Chapter 8: Progress and Challenges of Semiconducting Materials for Solar Photocatalysis -- Chapter 9: Linear Optical Properties of Semiconductors: Principles and Applications -- Chapter 10: Computational Techniques on Optical Properties of Metal-Oxide Semiconductors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Polymerization. ; Polymers. ; Electronic books.
    Description / Table of Contents: It is well known that polymeric and composite materials are finding various applications in some critical areas of human endeavors, such as medicine, medical appliances, energy and the environment. This edition will, hopefully, evoke interest from scientists working in the fields of chemistry, polymer chemistry, electrochemistry and material science. Its applications and uses include: polymer electrolyte membrane fuel cells, sensors, actuators, coatings, electrochromic and electroluminescent materials, magnetic polymers, organo-metallic polymers, tissue engineering, methods of the immobilization of biological molecules, and dental and orthopedic applications. This edition is a highly valuable source for scientists, researchers, upper-level undergraduate and graduate students, as well as college and university professors, because it provides the most up-to-date reference work summarizing the pioneering research work in the field of polymeric and composite materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (372 pages)
    Edition: 1st ed.
    ISBN: 9781629480619
    Series Statement: Polymer Science and Technology
    DDC: 620.192
    Language: English
    Note: Intro -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- ADVANCED FUNCTIONAL POLYMERS AND COMPOSITES: MATERIALS, DEVICES AND ALLIED APPLICATIONS. VOLUME 1 -- Library of Congress Cataloging-in-Publication Data -- Dedication -- Contents -- Preface -- Contributors -- About the Editor -- Acknowledgments -- Chapter 1: Advances in Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells -- Abstract -- Abbreviations -- 1. Introduction -- 2. Proton Exchange Membrane Fuel Cells (PEMFCS) -- 2.1. Role of Proton Conducting Membrane in Proton Exchange Membrane Fuel Cells -- 2.2. Requirement for Proton Conducting Membrane for Proton Exchange Membrane Fuel Cells -- 2.3. Current Status of Perfluorinated Sulfonic Acid and Alternative Proton Conducting Membranes -- 2.4. Proton Transport in Sulfonic Acid Membranes -- 2.5. Challenges Facing Sulfonic Acid Membranes in Proton Exchange Membrane Fuel Cells -- 3. High Temperature Polymer Electrolyte -- Membrane Fuel Cell -- 3.1. Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells -- 3.2. Membranes Obtained by Modification with Hygroscopic Inorganic Fillers -- 3.3. Membranes Obtained by Modification with Solid Proton Conductors -- 3.4. Membranes Obtained by Modification with Less Volatile Proton Assisting Solvent -- 3.4.1. Doping with Heterocyclic Solvents -- 3.4.2. Doping with Phosphoric Acid -- 3.4.3. Radiation Grafted and Acid Doped Membranes -- 3.5. Disadvantages of Using Phosphoric Acid Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cell Applications -- 3.6. Alternative Membranes Based on Benzimidazole Derivatives -- 3.7. Alternative Benzimidazole Polymers Doped with Heteropoly Acids -- 3.8. Membrane Impregnated with Ionic Liquids -- 3.9. Summary of Membranes Obtained by Modification of Sulfonic. , Acid Ionomers -- 4. Proton Conduction Mechanism in High Temperature Proton Conducting Membrane -- Conclusion and Prospectives -- Acknowledgments -- References -- Chapter 2: Surface-Confined Ruthenium and Osmium Polypyridyl Complexes as Electrochromic Materials -- Abstract -- Abbreviations -- 1. Introduction -- 1.1. Electrochromic Windows, Displays and Mirrors -- 1.2. Classes of Electrochromic Materials -- 1.3. Metal Complexes As Electrochromic Materials -- 1.3.1. Ruthenium (II) Complexes As Electrochromic Materials -- (I). Optical Behavior of Ruthenium Complexes -- (II). Redox Behavior of Ruthenium Complexes -- (III). Role of Spacers in Dinuclear Ruthenium Complexes -- 1.3.2. Osmium (II) Complexes As Electrochromic Materials -- 1.3.3. Other Metal Complexes As Electrochromic Materials -- 1.4. Substrates Used for Electrochromic Material -- 1.5. Modification of Substrates -- 2. Surface-Confined Ruthenium Complexes -- As Electrochromic Materials -- 2.1. Chemically Adsorbed Ruthenium Complexes -- 2.2. Physically Adsorbed Ruthenium Complexes -- 3. Surface-Confined Osmium Complexes -- As Electrochromic Materials -- 3.1. Osmium Complex-Based Monolayer -- 3.2. Osmium Complex-Based Multilayer -- 4. Surface-Confined Hetero-Metallic -- Complexes As Electrochromic Materials -- 4.1. Coordinative Supramolecular Assembly As Thin Films -- Conclusion -- Acknowledgments -- References -- Chapter 3: Magnetic Polymeric Nanocomposite Materials: Basic Principles Preparations and Microwave Absorption Application -- 1Department of Materials Science, School of Applied Physics, Faculty of Science -- and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia -- 2Institute of Hydrogen Economy, Universiti Teknologi Malaysia, -- Jalan Semarak, Kuala Lumpur, Malaysia -- Abstract -- Abbreviations -- 1. Introduction -- 2. Historical Background. , 3. Interaction Mechanisms of Electromagnetic Wave -- with Materials -- 3.1. Interaction Mechanism with Conductor Materials -- 3.2. Interaction Mechanism with Dielectric Materials -- 3.3. Interaction Mechanism with Magnetic Materials -- 4. The Reason of Using Microwave Absorbing Materials -- 5. The Criteria for Choosing the Filler and the -- Importance of Matching Conditions for Ideal -- Microwave Absorbing Materials -- 5.1. Metal-Backed Single Layer Absorber Mode -- 5.2. Stand-Alone Absorbing Material Model -- 6. Types and Properties of Polymers -- 7. Magnetic Polymer Nanocomposites -- 7.1. Nanomaterials -- 7.2. Magnetic Polymer Nanocomposites' Properties -- 7.3. Magnetic Polymer Nanocomposites' Applications -- 7.4. The Importance of Dispersion in Magnetic Polymer Nanocomposites -- 8. Preparation and Processing of -- Magnetic Polymer Nanocomposites -- 8.1. In-Situ Oxidative Polymerization Method (with Sonication) -- 8.2. One-Step Chemical Method -- 8.3. Surface-Initiated Polymerization Method -- 8.4. Microemulsion Chemical Oxidative Polymerization Method -- 8.5. Reverse Micelle Microemulsion Method -- 8.6. In-Situ Inverse Microemulsion Polymerization -- 8.7. Irradiation Induced Inverse Emulsion Polymerization -- 8.8. Miniemulsion Polymerization -- 8.9. Mechanical Melt Blending Method -- 8.10. Melt Processing Method Using Ultrasonic Bath -- 8.11. Template Free Method -- 8.12. Solution Casting Method -- 8.13. Sonochemical Method -- 8.14. Electrochemical Synthesis -- 9. Electromagnetic Wave Absorption Application of Magnetic Polymer Nanocomposites -- 9.1. The Crucial Role of Magnetic Nanoparticles and Sample Thickness in the Determination of the Microwave Absorption Application -- 9.2. Effect of Magnetic Filler Size on the Microwave Absorption and/or Electromagnetic Interference Shielding Application. , 9.3. Broadening the Microwave Absorption Range for Low and High Frequency Applications Using Binary Magnetic Nanofillers -- 9.4. The Enhancement of the Microwave Absorption for Electromagnetic Interference Shielding Application Using Magnetic and Dielectric Nanofillers -- Conclusion -- References -- Chapter 4: Polyetheramide-Birth of a New Coating Material -- Abstract -- Abbreviations -- 1. Introduction -- 2. Raw Materials and Test Methods -- 3. Linseed Oil Based Polyetheramides[LPEtA] -- 4. Soybean Oil Based Polyetheramides (SPEtA) -- 5. Albizia Lebbek Benth Oil Based PEtA (ABOPEtA) -- 6. Jatropha Seed Oil Based PEtA(JPEtA) -- 6. Olive Oil Based PEtA (OPEtA) -- Conclusion -- Acknowledgments -- References -- [1] Sørensen, P. A., Kiil,S., Dam-Johansen, K. & -- Weinell, C. E. (2009). Anticorrosive coatings: a review, J. Coat. Technol. Res., 6(2), 135-176. -- Chapter 5: Advanced Functional Polymers and Composite Materials and Their Role in Electroluminescent Applications -- Abstract -- Introduction & -- Scope of the Work -- 1. Light Emitting Diodes (LEDs), Characteristics and Categories -- (a) LED- Device Configuration -- (b) Recent Developments in The LED's Technology -- In-organic Light Emitting Diode -- Materials & -- Characteristics -- 3-I. Luminescence and Scintillation from the Inorganic Phosphor Materials -- An Ideal Luminescencent Material's Characteristics -- 3-II. Scintillation -- 3-III. Inorganic Electroluminescent Materials & -- Devices -- Organic Light Emitting Diodes Devices (OELDs) -- 4- (i). OLED Characteristics -- 4-(ii). OLED- Device Configuration & -- Working Principle -- 4-(iii). General Electroluminescent Materials Used for OLED Devices -- 4-(iv). OLED Device Fabrication -- 4-(v). OLED- Electro-Optical (EO) Properties -- 4-(vi). Quantum Efficiency of OLED Devices -- The Classifications of OLED types. , 4-I. An Overview of Historical Background about Polymeric OLEDs -- (P-OLEDs) -- 4-II. Polymeric OLEDs (P-OLEDs) as Electroluminescent Devices -- 4- III. Polymeric OLEDs (P-OLEDs) Employed in Various Device's Applications -- Conclusion -- Acknowledgments -- References -- [1] Akcelrud, L. Prog. Polym. Sci. 28 (2003). 875-962. -- Chapter 6: Poly(Methacrylic Acid) and Poly (Itaconic Acid) Applications as pH-Sensitive Actuators -- Abstract -- Abbreviations -- 1. Introduction -- 2. Methacrylic Acid and Itaconic Acid -Basic Properties -- 2. Poly(methacrylic acid) and Poly(Itaconic Acid) pH-sensitive Polymers -- 2.1. Linear Systems -- 2.2. Hydrogels -- 2.3. Amphiphillic Block and Graft Copolymers (Micelles) -- 2.4. Modified Surfaces and Membranes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Cell Scaffolds and Fabrication Technologies for Tissue Engineering -- Abstract -- Abbreviations -- 1. Introduction -- 2. Cell Based-Therapies for Tissue Engineering -- 3. Scaffolds Preparation Technologies -- 3.1. Nanofibrous -- 3.2. Freeze-Drying -- 3.3. Fiber Bonding -- 3.4. Phase Separation -- 3.5. Gas Foaming -- 3.6. Rapid Prototyping -- 4. Special Applications in Tissue Ingineering -- 4.1. Injectable Matrices for Cell Therapy -- 4.2. Bioceramic Matrices for Cell Therapy -- Conclusion -- Acknowledgments -- References -- Chapter 8: Immobilization of Lipase by Physical Adsorption on Selective Polymers -- Abstract -- Abbreviations -- 1. Introduction -- 2. The Mechanism of Action of Lipases -- 3. Properties of Enzymes Influenced by Immobilization -- 4. Properties of Matrices for Immobilization -- 5. Methods for Enzyme Immobilization -- 5.1. Physical Adsorption -- Advantages and Disadvantages of Enzymes Immobilization Using the Adsorption Technique -- 5.2. Ionic Binding -- 5.3. Covalent Binding. , Advantages and Disadvantages of Enzymes Immobilization Using the Covalent Technique.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Analytical biochemistry ; Environmental chemistry ; Environmental Chemistry ; Green chemistry ; Nanotechnology ; Catalysis ; Analytical chemistry.
    Description / Table of Contents: 1. Nanostructured imprinted supported photocatalysts: Organic and inorganic matrixes -- 2. Supporting materials for immobilization of nanophotocatalysts -- 3. Non-metals (oxygen, sulfur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation -- 4. Challenges of synthesis and environmental applications of metal-free nano-heterojunctions -- 5. Perovskite-based materials for photocatalytic environmental remediation -- 6. Carbon Nitride-A Wonder Photocatalyst -- 7. Graphene and allies as a part of metallic photocatalysts -- 8. Silver-based photocatalysts- a special class -- 9. Green Synthesis of Novel Photocatalysts -- 10. Electrodeposition of Composite Coatings as a Method for Immobilizing TiO2 Photocatalyst -- 11. Spinning Disk Reactor technology in photocatalysis: nanostructured catalysts intensified production and applications
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 336 p. 104 illus., 74 illus. in color)
    ISBN: 9783030106096
    Series Statement: Environmental Chemistry for a Sustainable World 29
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Renewable energy sources ; Environmental chemistry ; Environmental Chemistry ; Chemical engineering ; Energy security ; Renewable energy resources.
    Description / Table of Contents: 1. Nanophotocatalysts for fuel production -- 2. Highly stable metal oxides-based heterostructured photocatalysts for an efficient photocatalytic hydrogen production -- 3. Novelty in designing of photocatalysts for water splitting and CO2 reduction -- 4. Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives -- 5. Photocatalysts for Artifical Photosynthesis -- 6. Polymeric semiconductors as efficient photocatalysts for water purification and solar hydrogen production -- 7. Advances and innovations in photocatalysis -- 8. Solar Light Active Nano Photocatalysts -- 9. High performance photocatalysts for organic reactions
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XIII, 273 p. 123 illus., 67 illus. in color)
    ISBN: 9783030049492
    Series Statement: Environmental Chemistry for a Sustainable World 31
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...