GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Zurich :Trans Tech Publications, Limited,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: Nanocomposites: The Future MaterialsSpecial topic volume with invited peer reviewed papers only.
    Materialart: Online-Ressource
    Seiten: 1 online resource (180 pages)
    Ausgabe: 1st ed.
    ISBN: 9783035732566
    Serie: Nano Hybrids and Composites Series ; v.Volume 20
    Sprache: Englisch
    Anmerkung: Intro -- Nano Hybrids and Composites Vol. 20 -- Preface -- Table of Contents -- WO3-TiO2 Nanocomposite and its Applications: A Review -- Nanocomposites in Controlled & -- Targeted Drug Delivery Systems -- Nanocomposites of Chalcogenide and their Applications -- Nanocomposites: Recent Trends and Engineering Applications -- Role of Nanocomposites in Agriculture -- Nanocomposite for Solar Energy Application -- Fabrication of Gelatin-Zr (IV) Phosphate and Alginate-Zr (IV) Phosphate Nanocomposite Based Ion Selective Membrane Electrode -- Development and Physico-Chemical Characterization of Conducting Polymeric Zirconium Based Advanced Nanocomposite Ion-Exchangers for Environmental Remediation -- Magnetic Nano-Сomposites and their Industrial Applications -- Keyword Index -- Author Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Millersville, PA :Materials Research Forum LLC,
    Schlagwort(e): Electronic books.
    Beschreibung / Inhaltsverzeichnis: This book reports current progress in the development, design and utilization of carbonaceous materials in such diverse areas as electronics, medical implants, drug delivery, clean energy, biofuel and pollution control. Keywords: Carbonaceous Materials, Carbons, Graphite, Biochar, Fullerenes, Graphene, Carbon Foam, Carbon Nanotubes, Graphene Oxide, Graphitic Carbon Nitride, Carbon Aerogels, Carbon Matrix Composites, Organic-inorganic Hybrid Materials, Building Materials, Carbon-based Composites, Carbon Matrix Polymer Composites, Conducting Polymers, Clean Energy, Energy Storage, Electrode Materials, Batteries, Supercapacitors, Fuel Cells, Catalysts, Bio-fuel Production, Organic Pollutants, Catalysts, Greenhouse Gas Sequestration, Climate Control, Bio-medical Applications, Biomass Applications, Smart Hybrids, Photocatalysts, Hydrogen Production, Contaminants Degradation, Pollution Control.
    Materialart: Online-Ressource
    Seiten: 1 online resource (344 pages)
    Ausgabe: 1st ed.
    ISBN: 9781945291975
    Serie: Materials Research Foundations Series ; v.42
    Sprache: Englisch
    Anmerkung: Intro -- Table of Contents -- Preface -- 1 -- Graphene and Graphene/TiO2 Nanocomposites for Renewable Dye Sensitized Solar Cells -- 1. Introduction -- 2. Historical overview of DSSCs -- 2.1 Material Selection for DSSCs -- 3. Reduced graphene oxide (rGO) -- 3.1 Electronic properties of rGO based bilayer systems -- 3.2 Thermal conductivity of rGO -- 3.3 Optical properties of rGO -- 3.4 Electrochemical performance of rGO -- 4. TiO2-rGO NC material -- 4.1 TiO2-rGO NC material's properties -- 4.2 Formation mechanism of TiO2-rGO NC material -- 4.4 Preparation of TiO2-rGO NC -- 4.4.1 Sol-Gel synthesis -- 4.4.2 Solution mixing synthesis -- 4.4.3 In-Situ growth synthesis -- 5. Conclusion -- 6. Acknowledgements -- References -- 2 -- Carbon Based Nanomaterials for Energy Storage -- 1. Introduction -- 2. Carbonaceous nanomaterials -- 2.1 Origin -- 2.2 Fullerenes -- 2.3 Carbon nanotubes -- 2.4 Graphene -- 2.5 Nitrogen doped carbon nanomaterial -- 2.6 Carbon gels -- 3. Energy storage system -- 3.1 Electrochemical storage system -- 3.1.1 Binder free electrodes -- 3.1.2 Super capacitors -- 3.1.3 Lithium-ion batteries -- 3.2 Nanomaterials as electrodes -- 3.3 Hydrogen storage system -- 3.4 Thermal energy storage -- 3.5 Nanomaterials as Fuel cells -- 3.6 Capture of carbondioxide and methane -- 4. Conclusion and future development -- References -- 3 -- Molecular Dynamics Simulation of Capped Single Walled Carbon Nanotubes and their Composites -- 1. Introduction -- 2. Materials and method -- 2.1 CNT -- 2.2 Polymer -- 2.3 Simulation strategy -- 3. Total potential energies and inter-atomic forces -- 4. Stiffness of SWCNTs -- 4.1 Modeling of SWCNTs -- 4.2 Geometry optimization -- 4.3 Dynamics -- 4.4 Mechanical properties -- 5. Results and discussion -- 6. Polymer/CNT Composites -- 6.1 Molecular model of polymer matrix -- 6.2 Elastic moduli of polymer. , 6.3 PMMA/CNT composite system -- 7. Conclusion -- References -- 4 -- Fullerenes and its Composites -- 1. Introduction -- 2. Fullerenes -- 2.1 Types of fullerenes -- 2.1.1 Nanotubes -- 2.1.2 Mega tubes -- 2.1.3 Bucky ball clusters -- 2.1.4 Polymers -- 2.1.5 Nano onion -- 2.1.6 Linked "ball and chain" dimers -- 3. Structure of fullerene -- 3.1 Bucky ball structure -- 3.2 Cylindrical structure -- 4. Synthesis -- 4.1 Arc discharge vaporization of graphite -- 4.2 Low - pressure Benzene/Oxygen diffusion flame method -- 4.3 Combustion process -- 4.4 Laser ablation -- 4.5 Chemical vapor deposition (CVD) -- 4.6 Chemical synthesis of fullerene -- 5. Properties -- 5.1 Physical properties -- 5.2 Size -- 5.3 Solubility -- 5.4 Chemical properties -- 5.5 Optical properties -- 5.6 Mechanical properties -- 5.7 Vibrational properties -- 5.8 Electrical properties -- 5.9 Magnetic properties -- 5.10 Lubricating properties -- 6. Composites of fullerenes -- 7. Applications -- 7.1 Fullerenes as wires -- 7.2 Medicinal applications -- 7.3 Fullerenes in organo photovoltaics -- 7.4 Fullerenes as hydrogen gas storage -- 7.5 Fullerenes as sensors -- Conclusion -- References -- 5 -- Graphene Oxide Composites and their Potential Applications -- 1. Supercapacitors or electrochemical capacitors -- 2. Lithium-ion batteries -- 3. Glucose sensors -- 4. H2O2 sensors -- 5. Photodegradation of organic pollutants -- 6. Cancer therapy -- Conclusion -- Acknowledgment: -- List of Abbreviations -- References -- 6 -- Bioceramics, Carbonaceous Composite and its Biomedical Applications -- 1. Introduction (Types of implant materials) -- 1.1 Stainless Steel -- 1.2 Cobalt-Chromium Alloys -- 1.3 Titanium Alloys -- 1.4 Commercially Pure Titanium (CP Ti) -- 1.5 Tantalum -- 1.6 Ultra High Molecular Weight Polyethylene (UHMWPE) -- 1.7 Ceramics -- 1.8 Composite Materials -- 1.9 Trabecular Metal. , 1.10 Bioabsorbable Materials -- 1.11 Silicone -- 2. Features of an ideal medical implants material -- 3. History of bioceramics origin -- 4. Bioceramics and its early uses -- 5. Overview of bioceramics applications -- 6. Subdivision of bioceramics -- 6.1 Bioinert -- 6.1.1 Alumina (Al2O3) -- 6.1.2 Zirconia (ZrO2) -- 6.2 Bioactive -- 6.2.1 Synthetic hydroxyapatite [Ca10(PO4)6(OH)2] -- 6.2.3 Bioactive glass (e.g. 45S5 Bioglass) -- 6.2.4 Apatite-wollastonite (A-W) glass-ceramic -- 6.3 Bioresorbable -- 6.4 Porous ceramics -- 7. Ceramic Materials for Artificial Joints -- 8. Coatings for medical implants -- 8.1 Carbon coating -- 8.2 Hydroxyapatite coating -- 9. Failure of metals used for biomedical devices -- 9.1 Corrosion -- 9.2 Fatigue and fracture -- 9.3 Wear -- 9.4 Metal ions release -- Acknowledgements -- References -- 7 -- Purification of Industrial Effluent by Ultrafiltration Ceramic Membrane based on Natural Clays and Starch Powder -- 1. Introduction -- 2. Characterization of the starting materials -- 2.1 Chemical composition of the powder -- 2.2 Particle size distribution (PSD) of the kaolin powder used in the tubular support elaboration -- 2.3 Phase identification -- 2.4 Thermal analysis -- 3. Support elaboration and characterization -- 3.1 Tubular porous support elaboration -- 3.2 Support characterization -- 4. Ultrafiltration layer deposition and characterization -- 4.1 Ultrafiltration layer deposition -- 4.2 Characterization of the slip -- 4.3 Membrane characterization -- 4.3.1 SEM analysis and pore size distribution -- 4.3.2 Water permeability -- 5. Application to the treatment of the industrial wastewater -- 5.1 Wastewater characteristics -- 5.2 Ultrafiltration treatment -- 5.3 Wastewater characterization -- 5.4 Membrane regeneration -- Conclusion -- References -- 8 -- Environmental Detoxification Using Carbonaceous Composites. , 1. Introduction -- 2. Carbon based materials -- 2.1 Fullerenes -- 2.2 Carbon Nanotubes -- 2.3 Graphene based material -- 3. Engineered carbon nanomaterials (ECNM) -- 4. Removal of ionic pollutants -- 5. Removal of organic pollutants -- 6. Removal of air pollution -- 7. Properties -- 8. Photocatalysis and sorbents -- 9. Carbonaceous nanomaterials as sorbents -- 10. Composite filters -- 11. Renewable energy -- 12. Antimicrobials agents -- 13. Sensor based on carbon nanomaterials -- Conclusion -- References -- 9 -- Recent Innovation and Advances in Utilization of Graphene Oxide Based Photocatalysis -- 1. Introduction -- 2. Graphene oxide (GO) -- 2.1 Synthesis of GO from graphite powder/flakes -- 3. Reduced graphene oxide (RGO) -- 3.1 RGO synthesis -- 3.2 Thermal reduction -- 3.3 Chemical reduction -- 3.4 Photoreduction of GO -- 3.5 Solvothermal method -- 3.6 Green reduction strategies -- 4. Chemical modification or functionalization -- 5. Utilization and application of GO and RGO -- 5.1 Role in photocatalysis -- 5.2 Role of GO/RGO in the photocatalytic hydrogen generation and oxidation reduction processes -- 6. Mode of biomedical application -- 7. Future perspective and exploration -- 8. Conclusion -- References -- 10 -- A Critical Review on Spectroscopic Characterization of Sustainable Nanocomposites Containing Carbon Nano Fillers -- 1. Introduction -- 1.1 Carbon nano-fillers -- 1.2 Polymer nanocomposites -- 2. Characterization of nanomaterials -- 2.1 X-ray diffraction -- 2.2 Raman spectroscopy -- 2.3 Scanning tunneling microscopy and transmission electron microscopy -- 2.3.1 Principle of scanning tunneling microscopy -- 2.3.2 Transmission electron microscopy -- 2.3.3 Examples of STM and TEM -- 2.4 X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy -- 2.4.1 X-ray photoelectron spectroscopy. , 2.4.2 Fourier transform infrared (FTIR) Spectroscopy -- 2.4.3 Examples of measurements of XPS and FTIR -- 2.5 UV-Visible spectroscopy -- 2.6 Other techniques -- 3. Future trend -- Conclusions -- References -- 11 -- Biochar and its Composites -- 1. Introduction -- 2. Biochar structure and composition -- 3. Biomass conversion methodology -- 4. Biochar production -- 4.1 Pyrolysis -- 4.2.1 Materials required for pyrolysis process -- 4.2.2 Working principle -- 4.2.3 Factors influencing the process of pyrolysis -- 4.3 Biomass gasification -- 4.3 Hydrothermal carbonisation -- 5. Biochar characterization -- 5.1 Physical characterization -- 5.2 Chemical characterization -- 6. Biochar composites -- 7. Environmental impacts of biochar -- 8. Applications -- 8.1 Biochar as sorbents -- 8.2 Biochar in agriculture -- 8.3 Carbon sequestration -- Conclusion -- References -- back-matter -- Keyword Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Hauppauge :Nova Science Publishers, Incorporated,
    Schlagwort(e): Biopolymers. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (330 pages)
    Ausgabe: 1st ed.
    ISBN: 9781536121377
    Serie: Polymer Science and Technology
    DDC: 572.33000000000004
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- Preface -- Acknowledgments -- Chapter 1 -- Biopolymers in Devices for Environmental Monitoring and Protection -- Abstract -- 1. Materials for Electronics and Photonics -- 1.1. Substrates and Insulators -- 1.2. Semi-Conductors -- 1.3. Conductors -- 1.4. Photonic Materials -- 2. Materials with Envisaged Use Both in Electronics and Photonics -- 3. Biopolymer-Based Materials for Preparing Components for RES and Batteries -- 3.1. membranes for Fuel Cells -- 3.2. solid Polymer Electrolyte System for Rechargeable Batteries -- 3.3. materials for Solar Cells Application -- 4. Biopolymer-Based Materials for Environment Monitoring Sensors -- 4.1. Chitosan -- 4.2. Other Polysaccharides -- 4.3. deoxyribonucleic Acid -- References -- Chapter 2 -- Biopolymers for in Vivo and in Vitro Controlled Drug Delivery -- Abstract -- 1. Introduction -- 1.1. Modification of Biopolymers -- 1.2. Modification of Chitosan -- 1.3. Modification of Alginate -- 1.3.1. Graft Polymerisation of Alginates -- 1.3.2. Acetylation of Alginates -- 1.3.3. Sulfation of Alginates -- 1.3.4. Phosphorylation of Alginates -- 1.3.5. Hydrophobic Modification of Alginates -- 1.3.6. Covalent Cross Linking of Alginates -- 1.3.7. Modification by Cell Signalling Molecule -- 1.3.8. Modification of Gelation -- 1.4. Application of Biopolymer -- 1.5. Application of Chitosan -- 1.6. Application of Alginate -- 1.7. Application of Gelatin -- Conclusion -- References -- Chapter 3 -- Removal of Heavy Metal Ions by Adsorption through Biopolymers -- Abstract -- 1. Introduction -- 2. Effect of Different Heavy Metals on Environment -- 2.1. Copper -- 2.2. Cadmium -- 2.3. Lead -- 2.4. Arsenic -- 2.5. Mercury -- 3. Different Methods Used for the Removal of Heavy Metals -- 3.1. Chemical Precipitation -- 3.2. Solvent Extraction -- 3.3. Coagulation-Flocculation -- 3.4. Reverse Osmosis. , 3.5. Evaporation -- 3.6. Ultrafiltration -- 3.7. Electrodialysis -- 3.8. Flotation -- 3.9. Ion Exchange -- 3.10. Adsorption -- 3.11. Bioadsorption -- 3.11.1. Seaweeds -- 3.11.2. Alginate -- 3.11.3. Chitin and Chitosan -- 3.11.4. Chitosan/a-Alumina Composite -- 3.11.5. Manganese Copper Ferrite/Polymer (AA, MA, VA) Composite -- 3.11.6. Gum Tragacanth Based Biopolymer -- Concluding Remarks and Future Scope -- References -- Chapter 4 -- Biopolymer Drived Hydrogels and Their Diverse Applications: A Review -- Abstract -- 1. Introduction -- 1.1. Classification of Hydrogel Products -- 1.1.1. Classification Based on Source -- 1.1.2. Classification According to Polymeric Composition -- 1.1.3. Classification Based on Configuration -- 1.1.4. Classification Based on Type of Cross-Linking -- 1.1.5. Classification Based on Physical Appearance -- 1.1.6. Classification According to Network Electrical Charge -- 1.2. Hydrogel Product Sensitive to Environmental Conditions -- 1.3. Utilization of Hydrogel Products -- 1.4. Preparation of Hydrogels -- 1.4.1. Use of Crosslinkers -- 1.4.2. Use of Gelling Agent -- 1.4.3. Use of Irradiation and Freeze Thawing -- 1.4.4. Synthesis of Hydrogel in Industry -- 2. Characterization -- 2.1. Solubility -- 2.1.1. Method A -- 2.1.2. Method B -- 2.2. Swelling Measurement -- 2.2.1. Method A -- 2.2.2. Method B -- 2.2.3. Method C -- 2.3. FTIR -- 2.4. Scanning Electron Microscopy (SEM) -- 2.5. Light Scattering -- 2.6. Other Techniques -- 3. Application of Hydrogels -- Conclusion -- References -- Chapter 5 -- Waste Derived Biochar Based Bio Nanocomposties: Recent Progress in Utilization and Innovations -- Abstract -- 1. Introduction -- 1.1. Biochar -- 1.2. Magnetic Biochar -- 2. Production of Biochar -- 2.1. From Agricultural Wastes -- 2.2. From Industrial Waste -- 2.3. From Household Waste -- 3. Modification of Biochar. , 3.1. Chemical Modification -- 3.2. Physical Modification -- 3.3. Slow Pyrolysis -- 3.4. Fast Pyrolysis -- 3.5. Gasification -- 4. Synthesis of Magnetic Biochar Based Material -- 4.1. In-situ Synthesis -- 4.2. Impregnation -- 4.3. Coating -- 5. Application as Adsorbent -- 5.1. Removal of Heavy Metals: Effects of Functional Groups and Mechanism -- 5.2. Removal of Dyes and Organic Pollutants: Factors and Mechanisms -- 6. Soil Enrichment and Detoxification -- 7. Porosity and Surface Area -- 8. Cation Exchange Capacity -- 9. Other Applications -- Conclusion -- References -- Chapter 6 -- Naturally Occurring Biodegradable Polymers -- Abstract -- 1. Introduction -- 1.1. Biodegradable Polymers -- 1.2. Naturally Occurring Biodegradable Polymers -- 1.2.1. Starch -- 1.2.2. Cellulose -- 1.2.3. Pectin -- 1.2.4. Chitosan -- 1.2.5. Guar Gum -- Conclusion -- References -- Chapter 7 -- Progress from Composite Materials to Biocomposite Materials and Their Applications -- Abstract -- 1. Introduction -- 2. Classification of Composite Materials -- 2.1. Organic Matrix Composites (OMCs) -- 2.1.1. Polymer Matrix Composites (PMCs) -- 2.1.2. Carbon Carbon Composites -- 2.2. Metal Matrix Composites (MMCs) -- 2.3. Ceramic Matrix Composites (CMCs) -- 2.3.1. Fibre Reinforced Composites (FRCs) -- 2.3.2. Laminar Composites -- 2.3.3. Particulate Composites -- 3. Biopolymer Based Composites -- 3.1. Starch Based Biocomposites -- 3.2. Pectin Based Biocomposites -- 3.3. Cellulose Based Biocomposites -- 3.4. Chitosan Based Biocomposites -- 3.5. Guargum Based Biocomposites -- 4. Applications of Biocomposite Materials -- 4.1. Environmental Protection -- 4.2. Optical Applications -- 4.3. Magnetic Applications -- 4.4. Biomedical Applications -- Conclusion -- Acknowledgment -- References -- Chapter 8. , Biological Traits of Nanocomposites: Nanofertilizers, Nanopesticides, Anticancer and Antimicrobials -- Abstract -- Introduction -- Nanocomposites and Their Antimicrobial Activity -- Chitosan/Ag Nanocomposites -- Polyacrylic Acid/Silver Nanocomposite Hydrogels -- Polyaniline/Polyvinyl Alcohol/Ag Nanocomposites -- Copper-Polymer Nanocomposites -- Nanocomposite as a Potential Anticancer Agent -- Nanocomposite as a Potential Anticancer Agent -- Nanofertilizers and Nanopesticides -- References -- Chapter 9 -- Biobased-Nanocomposites for Food Packaging Applications -- Abstract -- 1. Introduction -- 2. Biopolymers -- 2.1. Polysaccharide Films -- 2.1.1. Applications of Polysaccharide Films -- 2.2. Protein Films -- 2.2.1. Applications of Protein-Based Films -- 3. Modification of Biopolymer Films towards Better Properties -- 3.1. Biopolymer Based Nanocomposites -- 3.1.1. Properties of Bio- Nanocomposite Films -- 3.1.1.1. Antimicrobial ability -- 3.1.1.2. Oxygen Inhibitors -- 4. Food Packaging Applications -- 5. Impression on Human Health -- Conclusion -- References -- Chapter 10 -- Natural Fibre Reinforced Biodegradable Composite Materials -- Abstract -- 1. Introduction -- 2. Natural Fibres -- 2.1. Classification of Natural Fibres -- 2.1.1. Animal Fibres -- 2.1.2. Mineral Fibres -- 2.1.3. Plant Fibres -- 2.2. Composition of Natural Fibres -- 2.3. Advantages of Natural Fibre -- 2.4. Limitations of Natural Fibres -- 2.5. Surface Modification of Natural Fibres -- 2.5.1. Graft Copolymerization -- 2.5.2. Chemical Methods -- 2.5.2.1. Alkaline Treatment -- 2.5.2.2. BenzoylationTreatment -- 2.5.2.3. SilaneTreatment -- 2.5.2.4. Acetylation Treatment -- 2.5.2.5. Isocyanate Treatment -- 2.5.2.6. Sodium Chlorite Treatment -- 2.5.2.7. Maleated Coupling Agents -- 2.5.2.8. Permanganate Treatment -- 2.5.2.9. Peroxide Treatment -- 3. Biodegradable Polymeric Materials. , 4. Natural Fibre Reinforced Biopolymer Based Composites -- References -- Chapter 11 -- Bio-Inspired Polymer Composites: Robust Biomedical Application Podium -- Abstract -- 1. Introduction -- 2. Biopolymer Oriented Smart Drug Delivery Systems -- 3. Biopolymer-Nanocomposites for Drug Delivery -- 4. Situate Explicit or Selective Targeting -- 5. Biopolymer Functionalized Magnetic Nanoparticles -- 6. Magnetic Nanoferrites Based Hyperthermia -- 6.1. Nanoferrites as Fascinating Carrier for Targeted Drug Delivery -- 6.2. Magnetic Resonance Imaging -- 6.3. Functionalized Magnetic Nano-Ferrites in Bio-Sensing -- References -- Chapter 12 -- Biopolymer Modifications Using Ionic Liquids for Industrial and Environmental Applications -- Abstract -- 1. Introduction -- 2. Biopolymers -- Pectin -- Chitosan -- Xylan -- Galactoglucomannan -- Lignin -- 3. Modification of Biopolymers -- Plasticization -- Physical blending -- 4. Need for Modification of Biopolymers -- 5. Ionic Liquids Modified Biopolymers -- Modification Types of Ionic Liquids -- Modification of Cellulose in Ionic Liquids -- Modification of Chitosan in Ionic Liquids -- 6. Synthetic Approaches of Modified Biopolymers -- Synthetic Approaches for Polymer-Protein Hybrid Structures -- 7. Applications of Biopolymers -- Medical Applications -- Agricultural Applications -- Packaging -- Cellulose-Based Packaging Materials -- Food Industry -- Environmental Applications -- 8. Environmental Benefits of Biopolymers -- Conclusion -- References -- Editor Contact Information -- Index -- Blank Page.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Schlagwort(e): Analytical biochemistry ; Environmental chemistry ; Environmental Chemistry ; Green chemistry ; Nanotechnology ; Catalysis ; Analytical chemistry.
    Beschreibung / Inhaltsverzeichnis: 1. Nanostructured imprinted supported photocatalysts: Organic and inorganic matrixes -- 2. Supporting materials for immobilization of nanophotocatalysts -- 3. Non-metals (oxygen, sulfur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation -- 4. Challenges of synthesis and environmental applications of metal-free nano-heterojunctions -- 5. Perovskite-based materials for photocatalytic environmental remediation -- 6. Carbon Nitride-A Wonder Photocatalyst -- 7. Graphene and allies as a part of metallic photocatalysts -- 8. Silver-based photocatalysts- a special class -- 9. Green Synthesis of Novel Photocatalysts -- 10. Electrodeposition of Composite Coatings as a Method for Immobilizing TiO2 Photocatalyst -- 11. Spinning Disk Reactor technology in photocatalysis: nanostructured catalysts intensified production and applications
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XIII, 336 p. 104 illus., 74 illus. in color)
    ISBN: 9783030106096
    Serie: Environmental Chemistry for a Sustainable World 29
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-01-23
    Beschreibung: The world presently is facing problem of crisis in fossil fuel and environmental pollution. Urbanisation, industrialisation and increasing population has led to steep rise in consumption of fuel all around the world. This indiscriminate usage of fuel has forced to think beyond conventional sources of fuel especially replacements of petroleum diesel and gasoline. Biodiesel in this case offers a great prospect. As biodiesel in derived mainly from bio materials like plants either edible or non-edible, it is very much reproducible. But due to high viscosity of these biodiesel they cannot be used directly for engine operation. Their blend with diesel can be used as fuel in engine without any modification in the engine. The aim of present paper is to study the impact of various biodiesel on engine performance. The study reveals that B20 biodiesel will be substitute to diesel as an alternative fuel. The result show that BSFC and BTE for B20 biodiesel is same as for diesel.
    Digitale ISSN: 1309-0127
    Thema: Energietechnik , Technik allgemein
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...