GLORIA

GEOMAR Library Ocean Research Information Access

Sprache
Bevorzugter Suchindex
Ergebnisse pro Seite
Sortieren nach
Sortierung
Anzahl gespeicherter Suchen in der Suchhistorie
E-Mail-Adresse
Voreingestelltes Exportformat
Voreingestellte Zeichencodierung für Export
Anordnung der Filter
Maximale Anzahl angezeigter Filter
Autovervollständigung
Themen (Es wird nur nach Zeitschriften und Artikeln gesucht, die zu einem oder mehreren der ausgewählten Themen gehören)
Feed-Format
Anzahl der Ergebnisse pro Feed
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Photocatalysis. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (277 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030126193
    Serie: Environmental Chemistry for a Sustainable World Series ; v.30
    DDC: 541.395
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Role of Nano-photocatalysis in Heavy Metal Detoxification -- 1.1 Introduction -- 1.2 Heavy Metals and Their Toxicological Effects -- 1.2.1 Cadmium -- 1.2.2 Chromium -- 1.2.3 Copper -- 1.2.4 Lead -- 1.2.5 Mercury -- 1.2.6 Nickel -- 1.2.7 Zinc -- 1.3 Overview of Photocatalysis -- 1.4 Mechanism of Photocatalysis -- 1.5 Types of Photocatalysis -- 1.5.1 Homogeneous Photocatalysis -- 1.5.2 Heterogeneous Photocatalysis -- 1.6 Overview and Mechanism of Nano-photocatalysis -- 1.7 Photocatalytic Nanoparticle Synthesis -- 1.7.1 Organic Synthesis -- 1.7.1.1 Plant Extracts Aqueous Solutions -- 1.7.1.2 Microorganisms -- 1.7.2 Chemical Synthesis -- 1.7.2.1 Sol-Gel Method -- 1.7.2.2 Hydrothermal Method -- 1.7.2.3 Polyol Synthesis -- 1.7.2.4 Precipitation Method -- 1.7.3 Physical Synthesis -- 1.7.3.1 Ball Milling -- 1.7.3.2 Melt Mixing -- 1.7.3.3 Physical Vapour Deposition (PVD) -- 1.7.3.4 Laser Ablation -- 1.7.3.5 Sputter Deposition -- 1.8 Mode of Operation on Nano-photocatalysis -- 1.9 Parameters Affecting the Photocatalytic Efficiency -- 1.9.1 Effect of pH of the Reaction Solution -- 1.9.2 Effect of Photocatalyst Concentration -- 1.9.3 Effect of Substrate Adsorption -- 1.9.4 Effect of Dissolved Oxygen -- 1.10 Application -- 1.10.1 Chromium -- 1.10.1.1 pH -- 1.10.1.2 Light Intensity -- 1.10.1.3 Photocatalyst Dosage -- 1.10.1.4 Presence of Organic Compounds -- 1.10.2 Mercury -- 1.10.3 Arsenic -- 1.10.4 Uranium -- 1.11 Disadvantages of Photocatalysis -- 1.12 Photocatalyst Modifications -- 1.12.1 Dye Sensitization -- 1.12.2 Ion Doping -- 1.12.3 Composite Semiconductor -- 1.13 Conclusion -- References -- Chapter 2: Solar Photocatalysis Applications to Antibiotic Degradation in Aquatic Systems -- 2.1 Introduction -- 2.2 Solar Photocatalysis Process. , 2.3 Solar Photocatalysis Treatment for Antibiotic Degradation -- 2.3.1 Trimethoprim -- 2.3.2 Sulfamethoxazole -- 2.3.3 Erythromycin -- 2.3.4 Ciprofloxacin -- 2.4 Conclusions -- References -- Chapter 3: Biomass-Based Photocatalysts for Environmental Applications -- 3.1 Introduction -- 3.2 Background of Biomass-Derived Carbon -- 3.2.1 Biochar -- 3.2.2 Activated Carbon (AC) -- 3.3 Synthesis Methods of Biomass-Derived Carbon -- 3.3.1 Pyrolysis -- 3.3.2 Hydrothermal Carbonization -- 3.3.3 Physical and Chemical Activation -- 3.4 Photocatalysts and Photocatalysis Reactions -- 3.5 Functionalized AC and Applications -- 3.5.1 Types of Functionalized AC -- 3.5.2 Functionalized AC Photocatalysts and Its Application -- 3.6 Future Challenges and Conclusions -- References -- Chapter 4: Application of Bismuth-Based Photocatalysts in Environmental Protection -- 4.1 Introduction -- 4.2 Photocatalytic Oxidation of Pharmaceuticals in Water -- 4.2.1 Tetracycline -- 4.2.2 Ciprofloxacin and Other Antibiotics -- 4.2.3 Carbamazepine -- 4.2.4 Ibuprofen and Diclofenac -- 4.2.5 Other Pharmaceuticals -- 4.3 Photocatalytic Oxidation of Industrial Micropollutants -- 4.3.1 Bisphenol A -- 4.3.2 Oxidation of Other Industrial Pollutants -- 4.4 Oxidation of the Indoor Air Pollutant NOx -- 4.5 Photocatalytic Reduction of Pollutants in Water and Air -- 4.5.1 Reduction of Cr(VI) in Water -- 4.5.2 Reduction of CO2 in Air -- 4.6 Water Splitting -- 4.7 Conclusions -- References -- Chapter 5: Phosphors-Based Photocatalysts for Wastewater Treatment -- 5.1 Introduction -- 5.2 Phosphor Materials: A Historical Background -- 5.3 Inorganic Phosphors in Photocatalysis -- 5.3.1 Types of Inorganic Phosphor Materials -- 5.3.2 Down-Conversion Phosphors in Photocatalysis -- 5.3.3 Up-Conversion Phosphors in Photocatalysis -- 5.3.4 Long-Persistent Phosphors in Photocatalysis. , 5.4 Organic Up-Conversion Phosphors in Photocatalysis -- References -- Chapter 6: Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remedi... -- 6.1 Introduction -- 6.1.1 Heterogeneous Semiconductor Photocatalysis -- 6.1.2 Potential TiO2-Based Photocatalysts -- 6.1.3 Limitations of the Fine Powder Form of TiO2-Based Photocatalysts -- 6.1.3.1 Comparison of Synthesis Methods -- 6.1.3.2 Improvements in TiO2 Performance by Structural Change, Doping, and Hybridization -- 6.2 TiO2 Photocatalysts with Polymer-Based Hybrid Photocatalysts for Wastewater Treatment -- 6.2.1 Need for Immobilization of TiO2-Based Photocatalysts -- 6.2.1.1 Features of a Stable Substrate, and Available Substrates -- 6.2.1.2 Comparison of Polymeric Supports for Wastewater Treatment -- 6.3 TiO2 Photocatalysts Supported with Nanocarbons for Wastewater Treatment -- 6.3.1 TiO2-Functionalized Nanocarbon-Based Photocatalysts -- 6.3.1.1 Potential Photocatalytic Improvements with Carbon Nanostructures for Wastewater Treatment -- 6.4 Conclusions and Future Outlook -- References -- Chapter 7: Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment -- 7.1 Introduction -- 7.2 Dependency of Catalytic Activity -- 7.2.1 Size-Dependent Catalytic Activity -- 7.2.2 Shape-Dependent Catalytic Effect -- 7.2.3 Interparticle Distance-Dependent Catalytic Effect -- 7.2.4 Support Interaction and Charge Transfer-Dependent Reactivity -- 7.3 Type of Nanoparticles -- 7.3.1 Non-metallic Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Semiconductor Nanoparticles -- 7.3.4 Ceramic Nanoparticles -- 7.3.5 Polymer Nanoparticles -- 7.3.6 Lipid-Based Nanoparticles -- 7.4 Types of Nanoparticles Based on Structure -- 7.5 Synthesis and Applications -- 7.5.1 Discussions -- 7.6 Synergetic Effect. , 7.7 Conclusion and Overview -- References -- Chapter 8: Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance -- 8.1 Introduction -- 8.2 Magnetic-Based Photocatalysts in Inactivation of the Microorganism -- 8.3 Factors Affecting the Photocatalytic Bacterial Inactivation -- 8.3.1 Effect of Magnetic-Based Photocatalyst Concentration and Light Intensity -- 8.3.2 Nature of Microorganism -- 8.3.3 Solution pH of Magnetic-Based Photocatalyst Suspension -- 8.3.4 Initial Bacterial Concentration -- 8.3.5 Physiological State of Bacteria -- 8.4 Proposed Mechanism for Bacteria Disinfection by the Magnetic-Based Photocatalyst -- 8.5 Using Magnetic-Based Catalyst in Photocatalytic Abatement of Organics -- 8.6 Photocatalysis for the Simultaneous Treatment of Bacteria and Organics -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Antimicrobial Activities of Photocatalysts for Water Disinfection -- 9.1 Introduction -- 9.2 Mechanisms of Photocatalytic Disinfection -- 9.3 Pure and Modified Photocatalysts -- 9.4 Photocatalytic Films and Biofilms -- 9.5 Photocatalytic Composites and Nanocomposites -- 9.6 Materials with Antimicrobial Activity in the Absence of Light -- 9.7 Case Study: Application of Supported Photocatalysts in Disinfection of Whey-Processing Water -- 9.8 Final Considerations -- References -- Chapter 10: Medicinal Applications of Photocatalysts -- 10.1 Introduction -- 10.1.1 Background -- 10.2 Antifungal Activity -- 10.3 Virucidal Activity -- 10.4 Antimicrobial Activity -- 10.5 Anticancer Activity -- 10.6 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Renewable energy sources. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (354 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030728779
    Serie: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Green chemistry. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (299 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030678845
    Serie: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Sprache: Englisch
    Anmerkung: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Ion exchange. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (230 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Schlagwort(e): Analytical biochemistry ; Environmental chemistry ; Environmental Chemistry ; Green chemistry ; Nanotechnology ; Catalysis ; Analytical chemistry.
    Beschreibung / Inhaltsverzeichnis: 1. Nanostructured imprinted supported photocatalysts: Organic and inorganic matrixes -- 2. Supporting materials for immobilization of nanophotocatalysts -- 3. Non-metals (oxygen, sulfur, nitrogen, boron and phosphorus)-doped metal oxide hybrid nanostructures as highly efficient photocatalysts for water treatment and hydrogen generation -- 4. Challenges of synthesis and environmental applications of metal-free nano-heterojunctions -- 5. Perovskite-based materials for photocatalytic environmental remediation -- 6. Carbon Nitride-A Wonder Photocatalyst -- 7. Graphene and allies as a part of metallic photocatalysts -- 8. Silver-based photocatalysts- a special class -- 9. Green Synthesis of Novel Photocatalysts -- 10. Electrodeposition of Composite Coatings as a Method for Immobilizing TiO2 Photocatalyst -- 11. Spinning Disk Reactor technology in photocatalysis: nanostructured catalysts intensified production and applications
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XIII, 336 p. 104 illus., 74 illus. in color)
    ISBN: 9783030106096
    Serie: Environmental Chemistry for a Sustainable World 29
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Schlagwort(e): Renewable energy sources ; Environmental chemistry ; Environmental Chemistry ; Chemical engineering ; Energy security ; Renewable energy resources.
    Beschreibung / Inhaltsverzeichnis: 1. Nanophotocatalysts for fuel production -- 2. Highly stable metal oxides-based heterostructured photocatalysts for an efficient photocatalytic hydrogen production -- 3. Novelty in designing of photocatalysts for water splitting and CO2 reduction -- 4. Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives -- 5. Photocatalysts for Artifical Photosynthesis -- 6. Polymeric semiconductors as efficient photocatalysts for water purification and solar hydrogen production -- 7. Advances and innovations in photocatalysis -- 8. Solar Light Active Nano Photocatalysts -- 9. High performance photocatalysts for organic reactions
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XIII, 273 p. 123 illus., 67 illus. in color)
    ISBN: 9783030049492
    Serie: Environmental Chemistry for a Sustainable World 31
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Schlagwort(e): Waste disposal ; Waste Management/Waste Technology ; Chemical engineering ; Environmental management ; Waste management.
    Beschreibung / Inhaltsverzeichnis: 1. Solution and Challenges in recycling waste cathode-ray tube -- 2. Reconfigurable recycling systems of e-waste -- 3. An Economic Assessment of Present and Future Electronic Waste Streams: Japan’s Experience -- 4. Recent technologies in electronic waste management -- 5. Recycling challenges for electronic consumer products to e-waste: A developing countries perspective -- 6. Chemical recycling of electronic waste for clean fuel production -- 7. Management of electrical and electronic equipment in European Union countries: a comparison -- 8. E-waste management from macroscopic to microscopic scale -- 9. Recycling processes for the recovery of metal from e-waste of the LED industry -- 10. E-waste management and the conservation of geochemical scarce resources -- 11. Sustainable electronic waste management: Implications on environmental and human health -- 12. E-waste and their implications on the environmental and human health
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XIII, 235 p. 57 illus., 29 illus. in color)
    Ausgabe: 1st ed. 2020
    ISBN: 9783030141844
    Serie: Environmental Chemistry for a Sustainable World 33
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Schlagwort(e): Environmental Medicine ; Environmental pollution ; Analytical biochemistry ; Environmental chemistry ; Environmental Chemistry ; Environmental health. ; Water pollution. ; Analytical chemistry.
    Beschreibung / Inhaltsverzeichnis: 1. Role of nano-photocatalysis in heavy metal detoxification -- 2. Solar photocatalysis applications to antibiotic degradation in aquatic systems -- 3. Biomass-based photocatalysts for environmental applications -- 4. Role of nano-photocatalysis in heavy metal detoxification -- 5. Phosphors-based photocatalysts for wastewater treatment -- 6. Nanocarbons and Polymers Supported TiO2 Nanostructures as Efficient Photocatalysts for Remediation of Contaminated -- 7. Wastewater and Hydrogen Production -- 8. Investigation in sono-photocatalysis process using doped-catalyst and ferrite nanoparticles for wastewater treatment -- 9. Magnetic-based photocatalyst for antibacterial application and catalytic performance -- 10. Antimicrobial activities of photocatalysts to water disinfection -- 11. Medicinal Applications of Photocatalysts
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XIII, 269 p. 68 illus., 32 illus. in color)
    Ausgabe: 1st ed. 2020
    ISBN: 9783030126193
    Serie: Environmental Chemistry for a Sustainable World 30
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Schlagwort(e): Environmental chemistry ; Environmental Chemistry ; Catalysis ; Pollution prevention ; Analytical chemistry ; Electrochemistry
    Beschreibung / Inhaltsverzeichnis: Preface -- 1. Use of carbon dioxide in polymer synthesis (Annalisa Abdel Azim, Alessandro Cordara, Beatrice Battaglino, Angela Re) -- 2. Biological conversion of carbon dioxide into volatile organic compounds (Ihana Aguiar Severo, Pricila Nass Pinheiro, Karem Rodrigues Vieira, Leila Queiroz Zepka, Eduardo Jacob-Lopes) -- 3. Application of metal organic frameworks in carbon dioxide conversion to methanol (Tamer Zaki) -- 4. Conversion of Carbon Dioxide into Formic Acid (Umesh Fegade and Ganesh Jethave) -- 5. Selective hydrogenation of carbon dioxide into methanol (Pham Minh, Roger, Parkhomenko, L'Hospital, Rego de Vasconcelos, Ro, Mahajan, Chen, Singh, N. Vo) -- 6. Conversion of carbon dioxide into formaldehyde (Trinh Duy Nguyen, Thuan Van Tran, Sharanjit Singh, Pham T. T. Phuong, Long Giang Bach, Sonil Nanda, Dai-Viet N. Vo) -- 7. A Short Review on Production of Syngas via Glycerol Dry Reforming (Sumaiya Zainal Abidin, Asmida Ideris, Nurul Ainirazali, Mazni Ismail)
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XI, 202 p. 45 illus., 28 illus. in color)
    Ausgabe: 1st ed. 2020
    ISBN: 9783030286385
    Serie: Environmental Chemistry for a Sustainable World 41
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Ion exchange chromatography. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (232 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030060824
    DDC: 543.0893
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- 1 Separation and Purification of Amino Acids -- 1.1 Introduction -- 1.2 Ion Exchange Chromatography in the Separation of Amino Acids -- 1.3 Ion Exchange Chromatography of Amino Acids -- 1.4 Ion Exchange Resins -- 1.5 Buffer Systems in IEC for Separation of Amino Acids -- 1.5.1 Sodium Citrate Buffer System -- 1.5.2 Lithium Citrate Buffer System -- 1.6 The Relation Between the Concentration of Eluent and Retention Time of Amino Acids -- 1.7 Effect of Temperature on Separation of Amino Acids -- 1.8 Effect of pH on Separation of Amino Acids -- 1.9 Effect of the Flow Rate of the Eluting Buffer on the IEC of Amino Acids -- 1.10 Regeneration of the Ion Exchange Column -- 1.11 Conclusion -- References -- 2 Ion Exchange Chromatography for Enzyme Immobilization -- 2.1 Introduction -- 2.2 Enzyme Immobilization -- 2.2.1 Immobilization Approaches -- 2.3 Ion-Exchange as an Immobilization Tool -- 2.4 Enzyme Immobilization Research and Application by Ion-Exchange in the Laboratory and Industry -- 2.5 Conclusion and Future Prospects -- References -- 3 Determination of Morphine in Urine -- 3.1 Introduction -- 3.1.1 Structural Features of Morphine -- 3.1.2 Physical Properties -- 3.1.3 Various Routes of Morphine Administration -- 3.1.4 Stay Period of Morphine in the Body -- 3.2 What Is Drug Abuse? -- 3.2.1 Fatal Dose of Morphine -- 3.2.2 Statistics Towards Morphine Addiction -- 3.2.3 Adverse Effect of Morphine -- 3.3 Samples Used for Detection of Morphine -- 3.3.1 Sample Collection/Preparation Prior to Detection -- 3.3.2 Extraction and Derivatization -- 3.4 Detection of Morphine in Urine -- 3.4.1 Chromatographic Methods -- 3.4.2 Liquid Chromatography (LC) and High-Performance Liquid Chromatography (HPLC) -- 3.4.3 Thin-Layer Chromatography (TLC) -- 3.4.4 Capillary Electrophoresis (CE) -- 3.4.5 Electrochemical Detection. , 3.4.6 Combination of Molecularly Imprinted Polymer with Chromatography -- 3.4.7 Some Miscellaneous Detection Techniques -- 3.5 Conclusion and Future Scope -- References -- 4 Chromatographic Separation of Amino Acids -- 4.1 Introduction -- 4.1.1 History -- 4.1.2 Classification of Amino Acids -- 4.2 Separation -- 4.2.1 What is Separation? -- 4.2.2 Why Need to Do Separation of Amino Acids? -- 4.2.3 What is Chromatography? -- 4.2.4 Classification of Chromatographic Methods -- 4.2.5 Advantages of Chromatographic Methods Over Other Methods -- 4.3 Separation of Amino Acids by Gas Chromatography (GC) -- 4.4 Liquid Chromatography (LC) -- 4.4.1 Separation of Amino Acids by High-Performance Liquid Chromatography (HPLC) -- 4.4.2 Advantages of Liquid Chromatography Over the Gas Chromatography -- 4.5 Amino Acid Separation by Countercurrent Chromatography (CCC) -- 4.6 Separation of Amino Acids by Thin-Layer Chromatography (TLC) -- 4.6.1 Preparation of Thin Plates -- 4.6.2 Sample Spotting on the Thin-Layer Plate -- 4.6.3 Detection of Amino Acids on the Thin-Layer Plate -- 4.7 Separation of Amino Acids by Capillary Electrophoresis (CE) -- 4.7.1 Various Modes for Capillary Electrophoresis (CE) -- 4.8 Separation of Amino Acids by the Hyphenated Technique -- 4.8.1 List of Hyphenated Techniques -- 4.8.2 Separation of Amino Acids Using GC-MS -- 4.8.3 Separation of Amino Acids by LC-MS -- 4.8.4 Separation of Amino Acids by LC-MS-MS -- 4.8.5 Separation of Amino Acids by CE-MS -- 4.9 Conclusion and Future Scope -- References -- 5 Applications of Ion-Exchange Chromatography in Pharmaceutical Analysis -- 5.1 Introduction -- 5.2 Application of Ion-Exchange Chromatography in Quantitative Analysis -- 5.2.1 Single-Mode Ion-Exchange Chromatography -- 5.2.2 Analysis of Small Molecules (Organic and Inorganic Ions) -- 5.2.3 Mixed-Mode Chromatography. , 5.3 Pretreatment and Separation Prior to Analysis -- 5.3.1 Ionic Solid-Phase Extraction -- 5.3.2 Mixed-Mode Ion-Exchange Solid-Phase Extraction -- 5.3.3 Flow Injection Ion-Exchange Preconcentration -- 5.4 Summary -- References -- 6 Thermodynamic Kinetics and Sorption of Bovine Serum Albumin with Different Clay Materials -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Results and Discussion -- 6.3.1 The Effect of Some Specific Physicochemical Properties BSA onto Adsorption -- 6.3.2 Analyses of FTIR, TGA, and SEM Images -- 6.3.3 Kinetic Analysis -- 6.3.4 Thermodynamic Parameters -- 6.4 Conclusions -- References -- 7 Sorbitol Demineralization by Ion Exchange -- 7.1 Introduction -- 7.2 Industrial Application of Sorbitol -- 7.3 Importance of Demineralization/Deashing of Sorbitol -- 7.4 Role of Ion-Exchange Chromatography -- 7.5 Different Types of Ion Exchangers for Sorbitol Demineralization -- 7.5.1 Cation-Exchange Chromatography -- 7.5.2 Anion-Exchange Chromatography -- 7.6 Conclusion -- References -- 8 Separation and Purification of Nucleotides, Nucleosides, Purine and Pyrimidine Bases by Ion Exchange -- 8.1 Introduction -- 8.2 Ion-Exchange Chromatography -- 8.2.1 Mechanism of Ion Exchange -- 8.2.2 Components of Ion-Exchange Chromatography -- 8.3 Nucleotides -- 8.4 Nucleosides -- 8.5 Purines and Pyrimidines -- 8.6 Column Preparation and Operation -- 8.7 Operation -- 8.8 Impact of Separation Parameters -- 8.9 Separation of Nucleotides -- 8.9.1 Fractionation of Nucleotides -- 8.9.2 Cation-Exchange Resin -- 8.9.3 Anion-Exchange Materials -- 8.10 Separation of Nucleosides -- 8.10.1 Purification of Nucleosides -- 8.10.2 Cation-Exchange Chromatography -- 8.10.3 Anion-Exchange Chromatography -- 8.11 Separation of Purines and Pyrimidines -- 8.11.1 Cation-Exchange Chromatography -- 8.11.2 Anion-Exchange Chromatography. , 8.12 Applications of Ion-Exchange Chromatography -- 8.13 Conclusion -- References -- 9 Separation and Purification of Vitamins: Vitamins B1, B2, B6, C and K1 -- 9.1 Introduction -- 9.2 Significance of Vitamins -- 9.3 Classification of Vitamins -- 9.3.1 Water-Soluble Vitamins -- 9.3.2 Fat-Soluble Vitamins -- 9.4 Sources of Vitamins -- 9.4.1 B Vitamins -- 9.4.2 Vitamin C -- 9.4.3 Vitamin K -- 9.5 Vitamin Deficiency Disorders -- 9.6 B Vitamins -- 9.6.1 Vitamin B1 -- 9.6.2 Vitamin B2 -- 9.6.3 Vitamin B6 -- 9.7 Vitamin C -- 9.8 Vitamin K1 -- 9.9 Separation and Purification of Vitamin -- 9.10 Ion-Exchange Chromatography -- 9.11 Mechanism of Ion-Exchange Chromatography -- 9.12 Separation and Purification of Vitamins B1, B2 and B6 -- 9.13 Separation and Purification of Vitamin C -- 9.14 Ion-Exchange Separation and Purification of Vitamin K1 -- 9.15 Conclusion -- References -- 10 Colour Removal from Sugar Syrups -- 10.1 Colourants in Sugar Solutions -- 10.1.1 Determination of Colour in Sugar and Sugar Juices -- 10.1.2 Colour Substances in Sugar and Sugar Solutions -- 10.1.3 Formation of Beet and Cane Colourants During the Technological Process -- 10.1.4 Removal of Colourants from Beet and Cane Sugar and Sugar Solution -- 10.2 Decolourisation with Ion-Exchange Resins -- 10.2.1 The Terminology Used in Ion-Exchange Technology -- 10.2.2 Types of Ion-Exchange Resins -- 10.2.3 Set-up of Industrial Chromatographic Systems for Colour Removal -- 10.2.4 Comparison of Ion-Exchange Technology with Other Decolourising Techniques -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...