GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cham : Imprint: Springer  (5)
  • Millersville, PA :Materials Research Forum LLC,  (2)
  • San Diego :Elsevier Science & Technology,  (2)
  • 1
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Chemistry. ; Environment. ; Engineering. ; Materials science.
    Description / Table of Contents: Chemical valorization of CO2 -- Progress in Catalysts for CO2 reforming -- Fuel Generation From Co2 -- Thermodynamics of CO2 conversion -- Enzymatic CO2 Conversion -- Electrochemical CO2 conversion -- Supercritical carbon dioxide mediated organic transformations -- Theoretical approaches to CO2 transformations -- Carbon Dioxide Conversion Methods -- Closing the carbon cycle -- Carbon Dioxide Utilization To Energy And Fuel -- Ethylenediamine-Carbonic Anhydrase Complex For Co2 Sequestration -- GREEN PATHWAY OF CO2 CAPTURE -- Carbon-derivatives from CO2 -- Catalysis for CO2 Conversion; Perovskite based catalysts -- Thermodynamics of CO2 conversion -- Carbon dioxide based green solvents -- State-of-the-art overview of CO2 conversions.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 353 p. 204 illus., 134 illus. in color.)
    Edition: 1st ed. 2022.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Engineering. ; Environment. ; Materials science. ; Energy. ; Chemistry.
    Description / Table of Contents: Waterborne Polyurethanes for Corrosion Protection -- Waterborne Polyurethane-Polyacrylate Hybrids -- Applications of Cationic Waterborne Polyurethanes -- Waterborne polyurethanes additive technologies -- Waterborne Polyurethanes in Sustainability Development -- Properties and characterization techniques for waterborne polyurethanes -- Novel research areas of applications for waterborne polyurethanes -- Applications of Polymeric Materials in Biomedical Engineering -- Applications Of Waterborne Polyurethanes Foams -- Waterborne polyurethane-metal oxide nanocomposite applications -- Waterborne polyurethanes for biomedical applications -- Biomedical and environmental applications of waterborne polyurethane-metal oxide nanocomposites.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(V, 192 p. 92 illus., 69 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030728694
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Materials science. ; Environment. ; Energy. ; Engineering. ; Water. ; Chemistry.
    Description / Table of Contents: Natural zeolites for sea water desalination -- Desalination Using Electrodialysis -- Membrane fouling in desalination -- Zeolite Membranes for Desalination -- Integrating desalination systems -- Reverse Osmosis Desalination -- Desalination by Membrane Distillation -- Nuclear Desalination -- Desalination battery -- Carbon nanotubes composite membrane for water desalination -- Integrated Desalination Systems Coupled With Nuclear Reactors -- Carbon based materials for desalination -- Microbial Desalination -- Graphene composite membrane for water desalination -- Renewable energy assisted desalination.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 254 p. 145 illus., 113 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030728731
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Waste management. ; Food—Biotechnology. ; Microbiology. ; Nutrition   . ; Bioorganic chemistry.
    Description / Table of Contents: Bioconversion of biowastes for energy applications -- Green and sustainable biomass processing for fuels and chemicals -- Bioconversion of food waste into ethanol -- Bioconversion of lignocellulosic residues into hydrogen -- Palm oil industry − processes, by-product treatment and value-addition -- Bionanocomposites derived from polysaccharides: green fabrication and applications -- Multi-utilization of cow dung as biomass.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 393 p. 133 illus., 109 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030618377
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Waste products as fuel. ; Biomass energy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (540 pages)
    Edition: 1st ed.
    ISBN: 9780128235270
    Language: English
    Note: Front Cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Waste to energy: an overview by global perspective -- 1.1 Introduction -- 1.2 Potential waste biomass -- 1.2.1 Agricultural and forest residue -- 1.2.2 Industrial waste biomass -- 1.2.3 Municipal waste biomass -- 1.2.4 Micro- and macroalgae waste biomass -- 1.3 Biofuels from waste -- 1.3.1 Biodiesel -- 1.3.2 Bioethanol fermentation -- 1.3.3 Bio-oil and biochar -- 1.3.4 Biomethane and biohydrogen -- 1.3.5 Syngas and bioelectricity -- 1.4 Socioeconomic perspective -- 1.5 Environmental perspective -- 1.6 Integrated approaches of biofuel from waste -- 1.7 Conclusion -- References -- Chapter 2 Potential of advanced photocatalytic technology for biodiesel production from waste oil -- 2.1 Introduction -- 2.1.1 Biodiesel-strength and weakness -- 2.1.2 Biodiesel as an alternative fuel -- 2.1.3 WCO as a feedstock for biodiesel production -- 2.2 Reaction process to produce biodiesel -- 2.2.1 Microemulsion technique -- 2.2.2 Direct use and blending technique -- 2.2.3 Pyrolysis of oil -- 2.2.4 Transesterification process -- 2.2.5 Esterification process -- 2.3 Catalyst for biodiesel production -- 2.4 Photocatalyst -- 2.4.1 Mechanism of photocatalysis -- 2.4.2 Important circumstances influence photocatalyst performance -- 2.4.3 Synthesis of photocatalysts -- 2.5 Fundamental of photocatalyst in biodiesel production -- 2.5.1 TiO2 as a photocatalyst in biodiesel production -- 2.5.2 Zinc oxide \(ZnO\) nanocatalyst as heterogeneous photocatalyst -- 2.6 Parameters affecting on photocatalytic esterification -- 2.6.1 Effect of alcohol to oil ratio -- 2.6.2 Effect of catalyst loading -- 2.6.3 Effect of stirring speed -- 2.6.4 Effect of UV irradiation time and lamp power -- 2.7 Conclusion -- Acknowledgments -- References. , Chapter 3 Biofuel production from food waste biomass and application of machine learning for process management -- 3.1 Introduction -- 3.2 Growing concern for food loss waste (FLW) -- 3.3 Conversion techniques -- 3.3.1 Biochemical technology -- 3.4 Thermochemical technology -- 3.4.1 Gasification -- 3.4.2 Pyrolysis -- 3.4.3 Liquefaction -- 3.5 Sustainable management of FW with machine learning -- 3.5.1 Machine learning overview for FW and biofuel -- 3.6 Prediction of energy demand and biofuel production from FW -- 3.6.1 Life cycle of machine learning-based energy demand and biofuel production -- 3.7 Conclusion -- References -- Chapter 4 Biological conversion of lignocellulosic waste in the renewable energy -- 4.1 Introduction -- 4.2 Lignocellulosic biomass and technical benefits -- 4.3 The role of bacteria in the decomposition of plant biomass and the production of RE -- 4.4 The future of RE and the challenges -- 4.5 Conclusion -- References -- Chapter 5 The potential of sustainable biogas production from animal waste -- 5.1 Introduction -- 5.2 Biogas components -- 5.3 Factors affecting biogas production -- 5.4 Anaerobic fermentation -- 5.4.1 Bacteria -- 5.4.2 Temperature -- 5.4.3 pH -- 5.4.4 Carbon to nitrogen ratio -- 5.4.5 Concentration of the solid in the feeding solution -- 5.4.6 Feeding rates of organic matter (degree of loading) -- 5.4.7 Time of solution remaining in the fermenter -- 5.4.8 Toxic substances in nutrition -- 5.4.9 Use prefixes -- 5.4.10 Flipping inside the fermenter -- 5.5 Environmental and economic benefits from biogas generation -- 5.6 The properties of the different gases compared to the biogas -- 5.7 Prospects for the development of biogas production technology and current problems -- 5.8 Conclusion -- References. , Chapter 6 Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals -- 6.1 Introduction -- 6.2 Food valorization to produce chemicals -- 6.2.1 Multitudinous valorization methods for chemical production -- 6.3 Transformation of food waste into bioenergy -- 6.3.1 Biogas formation -- 6.3.2 Biohydrogen production -- 6.3.3 Distinctive techniques for biofuel production -- 6.4 Conclusion -- References -- Chapter 7 Biochemical conversion of lignocellulosic waste into renewable energy -- 7.1 Introduction -- 7.2 Structural and functional attributes of LCMs -- 7.2.1 Socioeconomic aspects of LCMs -- 7.2.2 Biorefinery-based bioeconomy-considerations -- 7.2.3 Biotransformation of LCMs -- 7.2.4 Enzyme-based pretreatment of LCMs -- 7.2.5 Chemical-based pretreatment of LCMs -- 7.3 Biofuels generation -- 7.4 Conclusion and perspectives -- References -- Chapter 8 Recent trends on the food wastes valorization to value-added commodities -- 8.1 Introduction-food waste and its global scenario -- 8.2 FW hierarchy -- 8.3 FW-generating sectors -- 8.4 FW valorization to worth-added commodities -- 8.5 Biotransformation of FWs -- 8.6 Value-added components recovery -- 8.6.1 Recovery of organic acids -- 8.6.2 Nutraceuticals -- 8.6.3 Nanoparticles -- 8.6.4 Dietary fiber -- 8.7 Production of biomaterials and biofertilizer -- 8.7.1 Biopolymers -- 8.7.2 Single-cell protein (microbial biomass) -- 8.7.3 Bio-based colorants -- 8.7.4 Bioadsorbent -- 8.7.5 Biofertilizer -- 8.7.6 Bio-based high value-added products -- 8.7.7 Enzymes production from FW and their application -- 8.8 Conclusion and recommendations -- References -- Chapter 9 Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels -- 9.1 Introduction. , 9.2 Lignocellulosic biomass -- 9.2.1 Sources of lignocellulosic biomass -- 9.2.2 Properties and composition of lignocellulosic biomass -- 9.3 Pretreatment techniques -- 9.3.1 Physical pretreatment technique -- 9.3.2 Chemical pretreatment technique -- 9.3.3 Physiochemical pretreatment technique -- 9.3.4 Biological pretreatment technique -- 9.3.5 Combination pretreatment technique -- 9.4 Thermochemical conversion of lignocellulosic biomass -- 9.4.1 Thermochemical lignocellulosic biorefineries -- 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass -- 9.4.3 Hybrid biorefineries -- 9.5 Conclusion -- References -- Chapter 10 Biodiesel production from waste cooking oil using ionic liquids as catalyst -- 10.1 Introduction -- 10.2 Recent trends -- 10.3 Waste cooking oil -- 10.4 Transesterification of WCO -- 10.5 Experimental analysis -- 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] -- 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO -- 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system -- 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst -- 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts -- 10.6 Conclusion -- References -- Chapter 11 Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation -- 11.1 Introduction -- 11.2 Biodiesel synthesis -- 11.2.1 Feedstock used for biodiesel synthesis -- 11.2.2 FFAs and their effect on biodiesel synthesis -- 11.2.3 Types of catalysts and its significance -- 11.3 Cavitation -- 11.3.1 Acoustic cavitation -- 11.3.2 HC and its mechanism -- 11.4 Review of current status of utilization of WCO for synthesis of biodiesel -- 11.4.1 Synthesis of biodiesel using AC. , 11.4.2 Synthesis of biodiesel using HC -- 11.5 Conclusion -- References -- Chapter 12 Production of biochar from renewable resources -- 12.1 Biochar definition -- 12.2 Biochar applications -- 12.3 Biochar production -- 12.3.1 Pyrolysis -- 12.3.2 Gasification -- 12.3.3 Hydrothermal carbonization -- 12.3.4 Other processes -- 12.4 Factors affecting biochar production -- 12.4.1 Feedstocks of biochar -- 12.4.2 Thermochemical temperature -- 12.5 Mechanism of biochar production -- 12.6 Conclusions -- References -- Chapter 13 Microbial fuel cell technology for bio-electrochemical conversion of waste to energy -- 13.1 Introduction -- 13.2 MFC technology -- 13.2.1 Technological background, performance indicators, and operating parameters -- 13.3 Role of microbial species and mechanism of electron transport in MFC -- 13.3.1 Substrate composition in MFC -- 13.3.2 Electrode material -- 13.3.3 MFC design and architecture -- 13.4 Bioenergy production from MFC -- 13.4.1 Simple substrate molecules for electricity generation -- 13.4.2 Complex wastewater used for electricity generation -- 13.4.3 Pitfalls and future prospects -- 13.5 Conclusion -- References -- Chapter 14 Case study of nonrefined mustard oil for possible biodiesel extraction: feasibility analysis -- 14.1 Introduction -- 14.2 Materials and methods -- 14.2.1 Catalyst preparation -- 14.2.2 Collection of nonrefined mustard oil -- 14.2.3 Design of experiment using Taguchi -- 14.2.4 Transesterification -- 14.2.5 Characterization of catalyst -- 14.3 Results and discussion -- 14.3.1 Characterization of catalyst -- 14.3.2 ANOVA and RSM -- 14.3.3 Effect of operating parameters -- 14.4 Conclusion -- References -- Chapter 15 Waste oil to biodiesel -- 15.1 Second-generation feedstock for biodiesel production -- 15.1.1 Used cooking oil -- 15.1.2 Grease -- 15.1.3 Animal fat -- 15.1.4 Soapstock -- 15.1.5 Nonedible oils. , 15.2 Conclusion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Perovskite. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (458 pages)
    Edition: 1st ed.
    ISBN: 9780128204009
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 549.528
    Language: English
    Note: Intro -- Hybrid Perovskite Composite Materials: Design to Applications -- Copyright -- Contents -- Contributors -- 1 Nano-crystalline perovskite and its applications -- 1.1 Common material structures -- 1.2 Nonstoichiometry in perovskites -- 1.3 Crystallography and chemistry of perovskite structures -- 1.3.1 Size effects -- 1.3.2 Effect of the composition variation from the ideal ABO3 -- 1.3.3 Single perovskite -- 1.3.4 Double perovskite -- 1.4 Nano-structured perovskite level -- 1.5 Applications for nano-perovskites -- 1.6 Conclusion -- References -- 2 Preparation and processing of nanocomposites of all-inorganic lead halide perovskite nanocrystals -- 2.1 Introduction -- 2.2 Nanocomposites based on conventional semiconductor nanocrystals-Brief overview -- 2.3 Fabrication and processing of nanocomposites of all-inorganic perovskite nanocrystals -- 2.3.1 Preparation of silica, titania, zirconia, and siloxane-based perovskite nanocomposites -- 2.3.1.1 Preparation of nanocomposites of LHP NCs/SiO 2 and SiO 2 -related compounds -- 2.3.1.2 Preparation of LHP NCs/titania (TiO 2) composites -- 2.3.1.3 Preparation of LHP NCs/alumina (Al 2 O 3) composites -- 2.3.1.4 Preparation of LHP NCs/zirconia (ZrO 2) composites -- 2.3.1.5 Miscellaneous -- 2.3.2 Preparation of polymer-based perovskite nanocomposites -- 2.3.2.1 Preparation and properties of CsPbX 3 NCs/poly-methyl-methacrylate (PMMA) composites -- 2.3.2.2 Preparation and properties of CsPbX 3 NCs/polystyrene (PS) composites -- 2.3.2.3 Role of polymeric oligomeric silsesquioxane (POSS) in improving properties of CsPbX 3 NCs -- 2.3.3 Nanocomposites of mixed perovskite phases -- 2.3.4 Miscellaneous -- 2.4 Conclusion and future perspectives -- Acknowledgments -- References -- 3 Thin films for planar solar cells of organic-inorganic perovskite composites -- 3.1 Introduction. , 3.1.1 History of perovskite solar cells -- 3.2 Perovskite solar cells: Architecture, evolution, and thin-film synthesis -- 3.2.1 The architecture of PSCs -- 3.2.2 Evolution of PSC -- 3.2.3 Thin film formation -- 3.2.3.1 Vacuum thermal coevaporation -- 3.2.3.2 Layer-by-layer sequential vacuum sublimation -- 3.2.3.3 Vapor deposition by dual-source -- 3.2.3.4 Spin coating -- 3.2.3.5 Spray coating -- 3.2.3.6 Screen printing -- 3.2.4 Thin-films for perovskite solar cells: A case study -- 3.2.4.1 Fundamentals of photovoltaic devices -- 3.2.4.2 Optical and electrical properties of perovskite solar cells -- 3.3 Future scope of perovskite solar cells -- 3.4 Conclusion -- Acknowledgments -- References -- 4 Perovskite-type catalytic materials for water treatment -- 4.1 Introduction -- 4.2 Structure of perovskites -- 4.3 Synthesis methods of perovskites -- 4.3.1 Sol-gel method -- 4.3.2 Coprecipitation method -- 4.3.3 Hydrothermal method -- 4.3.4 Solid-state method -- 4.3.5 Microwave radiation method -- 4.4 Perovskite catalyst for water treatment -- 4.4.1 Process based on advanced oxidation process (AOPs) -- 4.4.1.1 Dye degradation -- 4.4.2 Process based on photocatalysis -- 4.5 Summary and perspective -- Acknowledgments -- References -- 5 Perovskite-based material for sensor applications -- 5.1 Introduction -- 5.2 Synthesis of perovskite materials -- 5.2.1 Solid-state reactions -- 5.2.2 Hydrothermal synthesis -- 5.2.3 Coprecipitation method -- 5.2.4 Sol-gel method -- 5.2.5 Gas phase reaction -- 5.2.6 Microwave synthesis -- 5.2.7 Wet chemical methods -- 5.3 Fabrication of sensors -- 5.3.1 Screen printing -- 5.3.2 Chemical vapor deposition -- 5.3.3 Sol-gel method -- 5.3.4 Spray pyrolysis -- 5.3.5 Physical vapors deposition -- 5.4 Perovskites as sensors -- 5.4.1 Perovskites as temperature sensors. , 5.4.2 Humidity sensors -- 5.4.3 Perovskites as gas sensors -- 5.4.4 Perovskite sensors for explosive species -- 5.5 Conclusions and future outlook -- References -- Further reading -- 6 High-sensitivity piezoelectric perovskites for magnetoelectric composites -- 6.1 Introduction -- 6.2 Historical background of ME coupling -- 6.3 Theoretical background -- 6.3.1 Perovskite oxide -- 6.3.2 Key piezoelectric and magnetostrictive parameters -- 6.3.3 ME effect -- 6.4 Factors influencing performance of ME composites -- 6.4.1 Nature of prominent phases -- 6.4.2 Geometrical configurations -- 6.4.3 Selection criteria for ME composites -- 6.5 Perovskite structure-based ME materials -- 6.5.1 Pb-based composites -- 6.5.2 Green ME composites -- 6.5.2.1 Barium titanate-based ME composites -- 6.5.2.2 Bismuth ferrite-based ME composites -- 6.5.2.3 Potassium niobate-based composites -- 6.6 Applications of ME composites -- 6.6.1 ME nanoparticles in nanomedicine -- 6.6.2 Energy harvesters -- 6.6.3 Magnetic sensors -- 6.7 Future directions -- 6.8 Conclusions -- References -- 7 Spectroscopic parameters of red emitting Eu3 +-doped La2Ba3B4O12 phosphor for display and forensic applicatio ... -- 7.1 Introduction -- 7.2 Synthesis and characterization of prepared phosphor -- 7.2.1 Materials and methods -- 7.2.2 Experimental details -- 7.3 Results and discussion -- 7.3.1 Phase identification and structural refinement -- 7.3.2 FTIR analysis of prepared LBBO:Eu3 + phosphors -- 7.3.3 Morphology -- 7.3.4 PL excitation and emission spectra for LBBO doped with Eu3 + -- 7.3.4.1 PL excitation studies of Eu3 + in LBBO host matrix -- Charge-transfer (CT) transition -- 7.3.4.2 Emission transitions of Eu3 + in LBBO host matrix -- 7.3.4.3 Concentration quenching -- 7.4 Fingerprint detection in different materials -- 7.5 Conclusion -- Acknowledgments. , References -- 8 Perovskite's potential functionality in a composite structure -- 8.1 Introduction -- 8.2 Structure of perovskites -- 8.2.1 Structure of LaCrO3 -- 8.2.2 Structure of LaFeO3 -- 8.3 Methods of synthesis -- 8.3.1 Pechini method -- 8.3.2 Conventional method -- 8.3.3 Citrate method -- 8.3.4 Oxalate method -- 8.3.5 Microwave-aided method -- 8.3.6 Combustion method -- 8.3.7 Sol-gel method -- 8.3.8 Solid-state oxide reaction method -- 8.3.9 Coprecipitation method -- 8.3.10 Solution combustion synthesis (SCS) -- 8.3.11 Polymer precursor method -- 8.4 Applications of perovskite oxides -- 8.5 Conclusion -- References -- 9 Compositional engineering of perovskite materials -- 9.1 Introduction -- 9.2 Synthesis methods for the compositional engineering -- 9.2.1 Solid-state reaction -- 9.2.2 Wet chemical methods -- 9.2.2.1 The chemical coprecipitation methods include two typical strategies -- 9.2.2.2 The sol-gel method -- 9.2.3 Hydrothermal synthesis method -- 9.3 Compositional engineering in BiFeO3-based perovskites -- 9.4 Compositional engineering in bismuth-layered perovskites -- 9.5 Conclusion -- Acknowledgments -- References -- 10 Development of hybrid organic-inorganic perovskite (HOIP) composites -- 10.1 Introduction -- 10.2 Types of HOIPs -- 10.2.1 Development of ferroelectric HOIPs -- 10.2.1.1 1D-HOIPs -- 10.2.1.2 2D-HOIPs -- 10.2.1.3 3D-HOIPs -- 10.2.2 Development of dielectric HOIPs -- 10.2.3 Development of piezoelectric HOIPs -- 10.2.4 Development of pyroelectric HOIPs -- 10.3 Development in electrochemical and photovoltaic behavior of HOIPs -- 10.4 Conclusions -- References -- Further reading -- 11 Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments -- 11.1 Introduction -- 11.2 Progress in efficiency -- 11.3 Progress in stability. , 11.3.1 Factors affecting stability -- 11.3.1.1 Effect of oxygen and moisture -- 11.3.1.2 Effect of Temperature -- 11.3.1.3 Effect of illumination -- 11.3.1.4 Other factors -- 11.4 Summary and future scope -- References -- 12 Enhancement of photoluminescence/phosphorescence properties of Eu3 +-doped Gd2Zr2O7 phosphor -- 12.1 Introduction -- 12.2 Experimental -- 12.3 Results and discussion -- 12.3.1 X-ray diffraction analysis -- 12.3.2 SEM images of phosphor -- 12.3.3 Photoluminescence studies of pure and Eu3 +-doped GZO phosphor -- 12.4 PL studies of Eu3 +-doped GZO phosphor -- 12.4.1 CIE coordinate -- 12.5 Conclusion -- Acknowledgments -- References -- 13 Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications -- 13.1 Introduction and general features -- 13.2 Perovskite and perovskite structure -- 13.3 Three-dimensional organic-inorganic hybrid halide perovskites -- 13.3.1 Gold Schmidt's and tolerance factor concept -- 13.4 Low-dimensional organic-inorganic hybrid layered halide perovskites -- 13.4.1 Dimensionality -- 13.4.2 Two-dimensional perovskite system -- 13.5 Double perovskite structure -- 13.6 Hybrid halide double perovskite -- 13.7 Applications -- 13.7.1 Electronic applications (photovoltaic and solar cells) -- 13.7.2 Optoelectronic applications -- 13.7.2.1 Light-emitting diode -- 13.7.2.2 Lasers -- 13.7.2.3 Photodetectors -- 13.7.2.4 Water-splitting -- 13.7.2.5 Field effect transistors -- 13.8 Conclusion -- 13.9 Vision for the future -- References -- 14 Hybrid perovskite photovoltaic devices: Architecture and fabrication methods based on solution-processed metal oxide tr ... -- 14.1 Introduction -- 14.1.1 Electron transport layer (ETL) -- 14.1.2 Hole transport layer (HTL) -- 14.2 Conclusion -- Acknowledgments -- Conflict of interest -- References. , 15 Composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Coordination polymers. ; Electronic books.
    Description / Table of Contents: The book focusses on the following applications: gas capture and storage, especially molecular hydrogen storage; performance enhancement of Li-ion batteries; gas separation, nano-filtration, ionic sieving, water treatment, and catalysis, etc. Keywords: MOF Materials, Hydrogen Storage, Renewable Energy Applications, Lithium Batteries, MOF-Quantum Dots, Clean Energy, Nanoporous MOFs, Supercapacitors, Therapeutic Applications, Biosensing, Bioimaging, Phototherapy of Cancer, Gas Separation, Nano-filtration, Ionic Sieving, Water Treatment, Drug Delivery, Theranostics; Nanoparticle Photosensitizers, Photodynamic Therapy (PDT), Photothermal Therapy (PTT).
    Type of Medium: Online Resource
    Pages: 1 online resource (427 pages)
    Edition: 1st ed.
    ISBN: 9781644900437
    Series Statement: Materials Research Foundations Series ; v.58
    DDC: 547.7
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks -- 1. Introduction -- 2. DFT study of site characteristics in MOFs for hydrogen adsorption -- 3. Grand Canonical Monte Carlo (GCMC) for gravimetric and volumetric uptakes -- Conclusion -- Reference -- 2 -- Metal Organic Frameworks Based Materials for Renewable Energy Applications -- 1. Introduction -- 2. Need for renewal energy -- 3. Metal organic frameworks -- 4. MOFs for environmental applications and renewable energy -- 5. Metallic organic framework based materials for hydrogen energy applications -- 6. Hydrogen Storage by MOFs -- 7. Storage of gases and separation process by MOFs -- 8. Metal organic frameworks based materials for conversion and storage of CO2 -- 9. Use of MOFs for biogas -- 10. Storage of thermal energy using MOF materials -- 11. Metal organic frameworks based materials for oxygen catalysis -- 12. MOF based materials for rechargeable batteries and supercapacitors -- 13. Metal organic framework based materials in the use of dye sensitized solar cells -- Conclusion -- References -- 3 -- Metal Organic Frameworks Composites for Lithium Battery Applications -- 1. Introduction -- 2. Applications of MOFs in lithium-ion batteries -- 3. Applications of MOFs in lithium sulphur batteries. -- 4. Summary and outlook -- References -- 4 -- Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites -- 1. Introduction -- 1.1 Metal-organic frameworks -- 1.2 Quantum dots -- 1.3 Gold QDs (AuQDs) -- 2. QD polymeric materials -- 2.1 Integration of QDs -- 2.2 Methods of encapsulating QD to polymer matrices -- 2.3 Incorporation into premade polymers -- 2.4 Suspension polymerization -- 2.5 Encapsulation via emulsion polymerization -- 2.6 Encapsulation via miniemulsion polymerization -- 3. QD hybrid materials. , 3.1 Strategies to generate QD hybrid materials -- 3.2 Exchanging ligand between polymer and QDs -- 3.3 Polymer grafting to QDs -- 3.4 Polymer grafting from QDs -- 3.5 Polymer capping into QDs -- 3.6 QDs growth within polymer -- 3.7 Challenges in biocompatible polymer/QDs -- 4. Applications of QD composites -- 4.1 Bio-imaging -- 4.2 Photo-thermal therapies -- 4.3 Opto-electric applications -- 4.3.1 QD LEDs -- 4.3.2 Polymer QD liquid crystal displays -- 4.3.3 QD polymer photo-voltaic devices -- 5. Metallic NCs -- 5.1 Classification of metallic NCs -- 5.2 Production of metallic NCs -- 5.2.1 Metallic NCs synthesis methods -- 5.3 Applications of metallic nano-particles -- 5.3.1 Silver NCs -- 5.3.2 Pbs QDs -- Conclusion -- References -- 5 -- Designing Metal-Organic-Framework for Clean Energy Applications -- 1. Introduction -- 1.1 Introduction to MOF Composites & -- Derivatives -- 1.2 Chemistry of MOFs -- 2. Applications of MOF in clean energy -- 2.1 Hydrogen Storage -- 2.2 Carbon dioxide capture -- 2.3 Methane storage -- 2.4 Electrical energy storage and conversion -- 2.4.1 Fuel cell -- 2.5 MOFs for supercapacitor applications -- 2.6 NH3 removal -- 2.7 Benzene removal -- 2.8 NO2 removal -- 2.9 Photocatalysis -- Conclusion -- References -- 6 -- Nanoporous Metal-Organic-Framework -- 1. Introduction -- 1.1 Fundamental stabilities of nano MOFs -- 1.1.1 Chemical stability -- 1.1.2 In water medium -- 1.1.3 In acid/base condition -- 1.1.4 Thermal Stability -- 1.1.5 Mechanical Stability -- 1.2 Synthesis -- 1.2.1 Modulated synthesis -- 1.2.2 Post-synthetic modification (PSM) -- 1.3 Applications of MOFs -- 1.3.1 Gas separations and storage -- 1.3.2 Catalysis -- 1.3.2.1 Lewis acid catalysis -- 1.3.2.2 Bronsted acid catalysis -- 1.3.2.3 Redox Catalysis -- 1.3.2.4 Photocatalysis -- 1.3.2.5 Electrocatalysis -- 1.3.3 Water treatment -- 1.4 Other applications. , 1.4.1 Sensors -- 1.4.2 Supercapacitors -- 1.4.3 Biomedical applications -- Conclusion -- References -- 7 -- Metal-Organic-Framework-Based Materials for Energy Applications -- 1. Introduction -- 1.1 Role of MOF in supercapacitor -- 1.2 Role of MOF in oxygen evolution reaction (OER) -- 2. Synthesis of Ni3(HITP)2 MOF -- 3. Characterization of Ni3(HITP)2 MOF -- 4. Ni3(HITP)2MOF as supercapacitor electrode for EDLC : -- 5. Two electrode measurements -- 6. Electrochemical impedance (EIS) measurements -- 7. Device performance -- 8. Hybrid Co3O4C nanowires electrode for OER process -- 9. Synthesis of hybrid Co3O4C nanowires -- 10. Characterization of hybrid Co3O4C nanowires -- 11. Hybrid Co3O4C nanowires MOF electrode for oxygen evolution reaction -- Conclusion -- References -- 8 -- Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications -- 1. Introduction -- 2. MOFs: Structure, properties and strategies for SCs -- 3. Single-metal MOFs -- 4. Bimetal or doped MOFs -- 5. Hybrids and composites -- 6. Flexible or freestanding SCs -- Conclusion and Perspectives -- References -- 9 -- Metal-Organic Frameworks and their Therapeutic Applications -- 1. Introduction -- 2. Metal-organic frameworks -- 2.1 Usage areas of metal-organic frameworks -- 2.1.1 Controlled drug release -- 2.1.2 Antibacterial activity of MOFs -- 2.1.3 Biomedicine -- 2.1.4 Chemical sensors -- Conclusions and recommendations -- References -- 10 -- Significance of Metal Organic Frameworks Consisting of Porous Materials -- 1. Introduction -- 1.1 Definition of porosity -- 2. Inferences obtained from the wide range of relevant research articles -- 2.1 Introduction to porous MOFs -- 2.2 Zeolites - an amorphous & -- inorganic porous material -- 2.3 Activated carbon - an organic porous material -- 2.4 Formation of pores in MOFs -- 2.5 Types of pores. , 2.6 Characterization of porous MOFs -- 2.7 Checking for permanent porosity -- 2.8 Advantages of MOF porous materials -- 2.9 Porous MOFs in separation of gases -- 2.10 Nanoporous MOFs -- Conclusion -- References -- 11 -- Metal Organic Frameworks (MOF's) for Biosensing and Bioimaging Applications -- 1. Introduction -- 2. In vitro MOF complex sensors -- 2.1 DNA-RNA-MOF complex sensor -- 2.2 Enzyme-MOF complex -- 2.2.1 Enzymatic-MOF complex -- 2.2.2 Non-enzymatic-MOF complex -- 2.3 Fluorescent-MOF complex -- 3. In-vivo MOF complex sensors -- 3.1 MR complex -- 3.2 CT complex -- Conclusions and recommendations -- References -- 12 -- Nanoscale Metal Organic Framework for Phototherapy of Cancer -- 1. Introduction -- 2. Nanoscience and nanotechnology -- 2.1 Tumor ablation and nanotechnology in cancer treatment -- 3. Metal organic frameworks (MOFs) -- 4. Photothermal therapy (PTT) -- 5. Photodynamic therapy (PDT) -- 6. Historical development of phototherapy -- 7. Mechanism of phototherapy -- 7.1 Basic elements of photodynamic therapy -- 7.1.1 Singlet oxygen -- 7.1.2 Light sources -- 8. Photosensitizers (PSs) -- 8.1 First generation photosensitizers -- 8.2 Second generation photosensitizers -- 8.3 Third generation photosensitizers -- 8.4 Introduction of tumor cells and intracellular localization of photosensitizer -- 9. Cell death in phototherapy -- 10. nMOFs for PDT -- 11. nMOFs for PTT -- 11.1 Surface plasmon resonance (SPR) mechanism and plasmonic photothermal treatment (PPTT) method -- 11.1.1 Mie theory -- 11.1.2 Gold nanostructures -- 11.1.3 Photothermal properties of different gold nanostructures -- 11.1.4 Gold nanospheres used in photothermal therapy -- 11.1.5 Gold nanocages and nanorods used in photothermal therapy -- 11.1.6 Bioconjugation of gold nanostructures used in photothermal therapy -- 11.1.7 Determination of temperature changes in gold surface. , 12. Results and Perspectives -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Thermosphere-Congresses. ; Electronic books.
    Description / Table of Contents: Characterization, design, specific properties and applications of thermoset composites are reported. These composites are presently in high demand because they can be shaped into many-sided segments and structures, and can have a great variety of densities and special physical and mechanical properties. Keywords: Thermoset composites, Polymeric Composites, Fiber Reinforced Composites, Lignocellulosic Composites, Hybrid Bast Fibers, Epoxy Composites, Nano-Carbon/Polymer Composites, Conductive Composites, Polyurethane Composites, Wood Flour Filled Composites, Energy Absorption, Automotive Crashworthiness, Electromagnetic Shielding, Electromagnetic Field Emission Applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (350 pages)
    Edition: 1st ed.
    ISBN: 9781945291876
    Series Statement: Materials Research Foundations Series ; v.38
    DDC: 551.514
    Language: English
    Note: Intro -- front-matter -- Thermoset Composites: Preparation, Properties and Applications -- Table of Contents -- Preface -- 1 -- Energy Absorption of Natural Fibre Reinforced Thermoset Polymer Composites Materials for Automotive Crashworthiness: A Review -- 1.1 Introduction -- 1.2 Materials -- 1.3 Thermoset and thermoplastic composites -- 1.4 Matrix -- 1.5 Test methodologies -- 1.5.1 Quasi-static test -- 1.5.2 Dynamic test -- 1.6 Crashworthiness design -- 1.7 Crashworthiness prerequisites -- 1.8 Energy-absorbing thermoset composite structures -- 1.9 Assessing factors of energy absorption capability -- 1.9.1 Crush force efficiency (CFE) -- 1.9.2 Stroke efficiency (SE) -- 1.9.3 Initial failure indictor (IFI) -- 1.9.4 Specific energy absorption ES -- 1.10 Volumetric Energy absorption capability -- 1.11 Energy absorption -- 1.12 Literature survey -- 1.13 Conclusions -- Acknowledgments -- References -- 2 -- Wood Flour Filled Thermoset Composites -- 2.1 Introduction -- 2.2 Wood polymer composites -- 2.3 Wood flour composites (WFCs) -- 2.3.1 Processing of WFCs -- 2.3.2 Properties of WFCs -- 2.3.2.1 Mechanical properties -- 2.3.2.2 Surface roughness and wettability -- 2.3.2.3 Water absorption tests -- 2.3.2.4 Thermo-gravimetric analysis (TGA) -- 2.3.2.5 Differential scanning calorimetry (DSC) -- 2.3.2.6 Dynamic mechanical tests (DMA) -- 2.3.2.7 Creep test -- 2.3.2.8 Flammability characteristics -- 2.3.2.9 Tomography -- 2.3.3 Scanning electron microscopy (SEM) analysis -- 2.4 Practical applications -- Conclusions -- References -- 3 -- Experimental and Analysis of Jute Fabric with Silk Fabric Reinforced Polymer Composites -- 3.1 Introduction -- 3.2 Materials and methods -- 3.3 Preparation of composites -- 3.4 Experimentation -- 3.5 Results and discussions on experimentation -- 3.6 Analysis -- Conclusion -- References -- 4. , Biosourced Thermosets for Lignocellulosic Composites -- 4.1 Introduction -- 4.2 Urea, also a natural material for wood adhesives -- 4.3 Tannin thermoset binders for wood adhesives -- 4.4 New technologies for industrial tannin adhesives -- 4.5 Tannin-Hexamethylenetetramine (Hexamine) adhesives and adhesives with alternative aldehydes -- 4.6 Hardening by tannins autocondensation -- 4.7 Lignin adhesives -- 4.8 Protein adhesives -- 4.9 Carbohydrate adhesives -- 4.10 Unsaturated oil adhesives -- Conclusions -- References -- 5 -- Hybrid Bast Fibre Strengthened Thermoset Composites -- 5.1 Introduction -- 5.2 Bast fibre -- 5.2.1 Surface morphology and elemental composition analysis -- 5.2.2 Structural composition and the physical properties of the bast fibre -- 5.2.3 Composition and the properties of the different bast fibre -- 5.3 Advantage and limitation of bast fibre as reinforcing material -- 5.4 Surface modification of bast fibres -- 5.5 Methods for surface modification of natural fibres -- 5.3.1 Physical methods -- 5.5.2 Chemical methods -- 5.5.2.1 Alkali treatment -- 5.5.2.2 Graft copolymerization -- 5.5.2.3 Acetylation -- 5.5.2.4 Treatment with isocyanate -- 5.5.2.5 Other chemical treatments -- Conclusions -- References -- 6 -- Nano-Carbon/Polymer Composites for Electromagnetic Shielding, Structural Mechanical and Field Emission Applications -- 6.1 Introduction -- 6.2 Shielding parameters of GNCs/Polyurethane nanocomposites -- 6.2.2 Characterizations and measurements -- 6.2.3 Analysis of microwave parameters -- 6.2.4 E cient microwave absorbing properties: -- 6.3 Nanocomposite approach for structural engineering -- 6.3.1 GNCs as effective nanofiller -- 6.3.2 Dispersibility investigations: homogeneous distribution vs agglomeration and interfacial adhesion of GNCs -- 6.3.3 Raman mapping of GNCs nanocomposites -- 6.3.4 Optical imaging. , 6.3.5 Mechanical properties of GNCs/nanocomposites -- 6.3.3 Fracture mechanisms using fractography -- 6.3.4 Thermal and physical properties -- 6.4 MWNTs/nylon composite nanofibers by electrospinning -- 6.4.1 Synthesis of composite -- 6.4.2 Characterizations -- 6.4.3 I-V characteristic of the nanofiber composite -- 6.5 Carbon nanotube composite: Dispersion routes and field emission parameters -- 6.5.1 Synthesis of thin multiwall carbon nanotube composite -- 6.5.2 Characterization -- 6.3.3 Field emission parameters for the t-MWCNT-composite -- Summary -- References -- 7 -- Conductive Thermoset Composites -- 7.1 Introduction -- 7.2 Historical background of thermoset polymers -- 7.3 Method of Composite processing -- 7.4 Different types of CTC -- 7.4.1 Epoxy Based CTC -- 7.4.2 Polyurethane based CTC -- 7.4.3 Polyester based CTC -- 7.4.4 Polybenzoxanines based CTC -- 7.5 Properties of CTC -- 7.5.1 Thermal properties -- 7.5.2 Mechanical properties -- 7.5.3 Electrical properties -- 7.6 Applications of conductive thermoset composites -- 7.6.1 Electromagnetic interference (EMI) shielding -- 7.6.2 Anti-corrosive coatings -- 7.6.3 Shape memory application -- 7.6.4 Other applications -- 7.7 Problems and solution associated with CTC -- Conclusion -- Acknowledgment -- References -- 8 -- Waterborne Thermosetting Polyurethane Composites -- 8.1 Introduction -- 8.2 PUD thermosetting composites -- 8.2.1 Inorganic oxide based PUD thermosetting composites -- 8.2.1.1 Silica-based PUD thermosetting composites -- 8.2.1.2 Titania (TiO2) based PUD thermosetting composites -- 8.2.1.3 Zinc oxide (ZnO) based PUD thermosetting composites -- 8.2.1.4 Other inorganic oxide-based PUD thermosetting composites -- 8.2.2 PUD thermosetting composites with metal (Ag and Au) nanoparticles -- 8.2.3 PUD/clay thermosetting composites -- 8.2.4 PUD/Carbohydrate thermosetting composites. , 8.2.4.1 Cellulose-based PUD thermosetting composites -- 8.2.4.2 Starch reinforced PUD thermosetting composites -- 8.2.5 PUD thermosetting composites reinforced with nanocarbon materials -- 8.2.5.1 Graphene oxide (GO), and reduced graphene oxide (rGO) based PUD thermosetting composites -- 8.2.5.2 Carbon nanotubes (CNTs) reinforced PUD thermosetting composites -- Summary -- Abbreviations -- References -- 9 -- Classical Thermoset Epoxy Composites for Structural Purposes: Designing, Preparation, Properties and Applications -- 9.1 Introduction -- 9.2 Methods for modifying liquid epoxy compositions -- 9.2.1 Chemical modification of liquid epoxy compositions -- 9.2.2 Physico-chemical modification of liquid epoxy compositions -- 9.2.3 Methods of physical modification of liquid epoxy compositions -- 9.3 Physico-chemical aspects of the modification of epoxy polymers by dispersed and continuous fibrous fillers -- 9.3.1 Features of the formation of clusters in a polymer composite -- 9.3.2 Analysis of the surface interaction of fillers with epoxy oligomers -- 9.3.2.1 Surface interaction of inorganic fillers with epoxy oligomers -- 9.3.2.2 Surface interaction of organic fillers with epoxy oligomers -- 9.3.2.3 The mechanism of molecular interaction between epoxy polymer and filler -- 9.4 Effect of ultrasonic treatment regimes on the properties of epoxy polymers -- 9.4.1 Technological and operational properties of epoxy polymers -- 9.4.2 Physico-mechanical and technological properties of sonificated epoxy matrices -- 9.5 Ultrasonic intensification of prepregs formation -- 9.5.1 Process of capillary impregnation -- 9.5.2 Effect of ultrasonic modification regimes on the kinetics of impregnation of continuous fibrous fillers -- 9.6 Ultrasonic processing devices for liquid polymer systems -- 9.7 Modeling of the structure of oriented and woven fibrous materials. , 9.7.1 Physical models of a capillary-porous medium based on oriented fibrous fillers -- 9.8 Modeling of technical means for production of polymer composite materials -- 9.8.1 The technology of ultrasonic production of long-length epoxy composites -- 9.8.2 Modeling of technical means for thermoplastic production -- 9.9 Other applications of ultrasonic in the production of thermosets and thermoplastic -- 9.9.1 The effectiveness of ultrasonic treatment for the production of epoxy nanocomposites -- 9.9.2 Pepair technologies for the maintenance and restoration of polyethylene pipelines -- Conclusions -- References -- 10 -- A Review on Tribological Performance of Polymeric Composites Based on Natural Fibres -- 10.1 Introduction -- 10.2 Natural fibres -- 10.3 Polymer -- 10.4 Composite -- 10.5 Tribology -- 10.6 Friction and wear -- Summary -- Future Developments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Chemistry. ; Engineering. ; Environment. ; Materials science. ; Aufsatzsammlung ; Grüne Chemie
    Description / Table of Contents: Biomass-derived polyurethanes for sustainable future -- Mechanochemistry: a power tool for green synthesis -- Future trends in green synthesis -- Green synthesis of hierarchically structured metal and metal oxide nanomaterials -- Bioprivileged molecules -- Application of membrane in reaction engineering for green synthesis -- Photoenzymatic green synthesis -- Biomass derived carbons and their energy applications.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 301 p. 259 illus., 83 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...