GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • American Geophysical Union  (1)
  • IOP Science  (1)
  • University of Arizona Libraries  (1)
Document type
  • Articles  (3)
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 10 (2015): 074010, doi:10.1088/1748-9326/10/7/074010.
    Description: Spatially extensive and persistent drought episodes have repeatedly influenced human history, including the 'Strange Parallels' drought event in monsoon Asia during the mid-18th century. Here we explore the dynamics of sustained monsoon failure using observed and tree-ring reconstructed drought patterns and a 1300-year pre-industrial community earth system model control run. Both modern observational and climate model drought patterns during years with extremely weakened South Asian monsoon resemble those reconstructed for the Strange Parallels drought. Model analysis reveals that this pattern arises during boreal spring over Southeast Asia, with decreased precipitation and moisture flux, while related summertime climate anomalies are confined to the Indian subcontinent. Years with simulated South Asian drying exhibit canonical El Niño conditions over the Pacific and associated shifts in the Walker circulation. In contrast, multi-year drought periods, resembling those sustained during the Strange Parallels drought, feature anomalous Pacific warming around the dateline, typical of El Niño Modoki events.
    Description: This work was performed with support and funding from the Significant Opportunities in Atmospheric Research and Sciences Program (NSF AGS-1120459), WHOI Academic Programs Office Funds, and NSF AGS-1338734, AGS-1203704, and AGS-1304245.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © Arizona Board of Regents, 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Radiocarbon 56, no. 4 (2014): S61-S68, doi:10.2458/azu_rc.56.18321.
    Description: Also published in Tree-Ring Research, 70. no. 3 (2014): S61-S68, doi:10.3959/1536-1098-70.3.61
    Description: Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.
    Description: Funding was provided by the US National Science Foundation (NSF) under grants from the Earth System History (ESH) and Paleo Perspectives on Climate Change (P2C2) programs, AGS- 0075956, AGS-0758486, and AGS-1103314.
    Keywords: Dendroclimatology ; Eastern Mediterranean ; Tree-ring growth ; Reconstruction ; Drought
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 125(1),(2020): e2019JD031619, doi:10.1029/2019JD031619.
    Description: High‐resolution paleoclimate records are essential for improving our understanding of internal variability and the detection and attribution of forced climate system responses. The densely populated northeastern United States is at risk from increasing temperatures, severe droughts, and extreme precipitation, but the region has limited annual and seasonal‐resolution paleoclimate records beyond the instrumental record. Chamaecyparis thyoides, L. (B.S.P.), Atlantic white cedar, a wetland conifer found within 200 km of the Atlantic coastline of the United States, is a promising tree‐ring proxy that can fill in these data gaps. Here, we develop and analyze a new network of Atlantic white cedar tree‐ring chronologies across the northeastern United States and demonstrate that site selection is important for regional paleoclimate reconstructions. Ring width variability reflects winter through summer temperatures at inland and hydrologically stable sites in the northernmost section of the species' range. Ombrotrophic sites along the coast record hydrological signals and correlate with growing season precipitation. We demonstrate skillful regional climate field reconstructions for the last several centuries and show the increased skill from incorporating our moisture sensitive sites into broad‐scale products like the North American Drought Atlas. This comprehensive understanding of the species' climate responses leads to a tree‐ring network that provides the long‐term multivariate climate context at multidecadal and centennial time scales for the large‐scale ocean‐atmospheric processes that influence the climate of the region. We use this network to examine the covariance of temperature and drought across the New England area over the past two centuries.
    Description: This research is funded by the U.S. National Science Foundation Paleo Perspectives on Climate Change program (P2C2; AGS‐1304262 and AGS‐1501856). The authors of this paper thank the many field assistants who helped develop the northeastern AWC network. We thank the 300 Committee Land Trust, Dartmouth National Resources Trust, Orleans Conservation Trust, Marine Biological Laboratory, Trustees of Reservations, National Park Service, U.S. Forest Service, The Nature Conservancy, and private land owners who allowed access to field sites.
    Description: 2020-06-13
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...