GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (56)
  • IFM-GEOMAR  (4)
  • American Chemical Society  (1)
Document type
Keywords
  • 1
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  In: IFM-GEOMAR Report: From the Seafloor to the Atmosphere - Marine Sciences at IFM-GEOMAR Kiel -. , ed. by Villwock, A. IFM-GEOMAR, Kiel, Germany, pp. 21-22.
    Publication Date: 2019-09-23
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    IFM-GEOMAR
    In:  IFM-GEOMAR Annual Report, 2011 . pp. 28-29.
    Publication Date: 2018-10-16
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fiehn, Alina; Quack, Birgit; Hepach, Helmke; Fuhlbrügge, Steffen; Tegtmeier, Susann; Toohey, Matthew; Atlas, Elliot L; Krüger, Kirstin (2017): Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon. Atmospheric Chemistry and Physics, 17(11), 6723-6741, https://doi.org/10.5194/acp-17-6723-2017
    Publication Date: 2023-01-13
    Description: During two cruises wiht RV Sonne, SO234-2 from 8 to 19 July 2014 (Durban, South Africa to Port Louis, Mauritius) and SO235 from 23 July to 7 August 2014 (Port Louis, Mauritius to Malé, Maldives), within the SPACES (Science Partnerships for the Assessment of Complex Earth System Processes) and OASIS (Organic very short-lived Substances and their air sea exchange from the Indian Ocean to the Stratosphere) research projects, surface water samples were sampled from a continuous running pump in the hydrographic shaft of RV Sonne at a depth of 5 m. Deep water samples were taken from a Niskin-bottle rosette sampler. The samples were then analyzed for halogenated compounds using a purge and trap system onboard, which was attached to a gas chromatograph with an electron capture detector for surface water samples and a GC/MS Agilent 5975 for the deep water samples. An analytical reproducibility of 10% was determined from measuring duplicate water samples, detection limit was 0.2 pmol /L. Calibration was performed with several dilutions of a mixed-compound standard prepared in methanol.
    Type: Dataset
    Format: application/zip, 97 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-20
    Keywords: 1,1,1-Trichloroethane; Bromodichloromethane; Bromoiodomethane; Chloroiodomethane; CT; DATE/TIME; Depth, bathymetric; DEPTH, water; Dibromochloromethane; Dibromomethane; Dichloromethane; Diiodomethane; Iodomethane; LATITUDE; LONGITUDE; SO202/2; SO202/2-track; Sonne; Temperature, water; Tetrachloromethane; TransBrom; Tribromomethane; Trichloroethene; Trichloromethane; Underway cruise track measurements; West Pacific
    Type: Dataset
    Format: text/tab-separated-values, 1237 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hepach, Helmke; Quack, Birgit; Tegtmeier, Susann; Engel, Anja; Bracher, Astrid; Fuhlbrügge, Steffen; Galgani, Luisa; Atlas, Elliot L; Lampel, Johannes; Frieß, Udo; Krüger, Kirstin (2016): Biogenic halocarbons from the Peruvian upwelling region as tropospheric halogen source. Atmospheric Chemistry and Physics, 16(18), 12219-12237, https://doi.org/10.5194/acp-16-12219-2016
    Publication Date: 2024-02-01
    Description: Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.
    Keywords: SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hepach, Helmke; Quack, Birgit; Raimund, Stefan; Fischer, Tim; Atlas, Elliot L; Bracher, Astrid (2015): Halocarbon emissions and sources in the equatorial Atlantic Cold Tongue. Biogeosciences, 12(21), 6369-6387, https://doi.org/10.5194/bg-12-6369-2015
    Publication Date: 2024-02-01
    Description: Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol/L for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol/L in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol/L. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol/m**3/h for CHBr3, 10 ± 12 pmol/m**3/h for CH2Br2, 21 ± 24 pmol/m**3/h for CH3I and 384 ± 318 pmol/m**3/h for CH2I2 determined from 13 depth profiles.
    Keywords: SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Shi, Qiang; Marandino, Christa A; Petrick, Gert; Quack, Birgit; Wallace, Douglas WR (2014): A time series of incubation experiments to examine the production and loss of CH3I in surface seawater. Journal of Geophysical Research: Oceans, 119(12), 8242-8254, https://doi.org/10.1002/2014JC010223
    Publication Date: 2024-02-01
    Description: In order to investigate production pathways of methyl iodide and controls on emissions from the surface ocean, a set of repeated in-vitro incubation experiments were performed over an annual cycle in the context of a time-series of in-situ measurements in Kiel Fjord (54.3 N, 10.1E). The incubation experiments revealed a diurnal variation of methyl iodide in samples exposed to natural light, with maxima during day time and losses during night hours. The amplitude of the daily accumulation varied seasonally and was not affected by filtration (0.2µm), consistent with a photochemical pathway for CH3I production. The methyl iodide loss rate during night time correlated with the concentration accumulated during daytime. Daily (24 hour) net production (Pnet) was similar in magnitude between in vitro and in situ mass balances. However, the estimated gross production (Pgross) of methyl iodide ranged from -0.07 to 2.24 pmol/day and were 5 times higher in summer than Pnet calculated from the in-situ study [Shi et al., 2014]. The large excess of Pgross over Pnet revealed by the in-vitro (incubation) experiments in summer is a consequence of large losses of CH3I by as-yet uncharacterized processes (e.g. biological degradation or chemical pathways other than Cl- substitution).
    Keywords: DATE/TIME; Iodomethane; SOPRAN; Surface Ocean Processes in the Anthropocene; Time in hours; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 1584 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...