GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4)
  • American Association for the Advancement of Science  (1)
  • Hamburg  (1)
  • 1
    Keywords: Report ; Forschungsbericht
    Type of Medium: Book
    Pages: 43 S , zahlr. Kt , 30 cm
    Series Statement: Report / Max-Planck-Institut für Meteorologie 173
    Language: English
    Note: Literaturverz. S. 12 - 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 193 . pp. 84-97.
    Publication Date: 2021-02-08
    Description: To analyze the global hydroclimate response during the Younger Dryas cold event, we evaluate climate model results that have been constrained with proxy-based temperatures from the North Atlantic region. We find that both the temperature and the hydroclimate response have a clear global signature. A marked cooling is simulated over the North Atlantic Ocean (more than 5 °C) and the downwind continents (2–4 °C). This response is related to the weakening of the Atlantic meridional overturning circulation under influence of meltwater discharges. The hydroclimate response is most expressed over Eurasia in a belt between 40 and 60°N, and over Northern Africa in the Sahel region. In both areas, a strong decrease in soil moisture is simulated (up to 20% reduction). In contrast, a striking increase in moisture is found over southeastern North America (15% increase), where southerly atmospheric flow brings moist air to the continent. Outside these areas that are clearly affected by the cold North Atlantic Ocean, the responses of temperature and moisture are decoupled, with different causes for these temperature and hydroclimate responses. In the tropics, the hydroclimate response is governed by the southward shift of the intertropical convergence zone (ITCZ) due to the cooling of the North Atlantic Ocean. This causes drier conditions north of the equator and wetter conditions in the Southern Hemisphere tropics. The associated changes in soil moisture are relatively gradual here, taking up to two centuries to complete, suggesting that the impact of the ITCZ shift on the tropical hydroclimate is building up. Our experiment indicates that Southern Hemisphere continents experienced a small cooling (less than 0.5 °C) during the Younger Dryas, caused by the negative radiative forcing associated with reduced atmospheric methane concentrations and enhanced dust levels. In our simulation, the bi-polar seesaw mechanism is relatively weak, so that the associated warming of the South Atlantic Ocean is not overwhelming the reduction in radiative forcing. Our results thus indicate that in the tropics and/or Southern Hemisphere, the cooling is a response to the negative radiative forcing, while the hydroclimatic changes are predominantly resulting from ITCZ variations. Consequently, when interpreting hydroclimatic proxy records from these regions, data should not be compared directly to key records from high latitudes, such as Greenland ice core stable isotope records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 193 . pp. 84-97.
    Publication Date: 2021-02-08
    Description: To analyze the global hydroclimate response during the Younger Dryas cold event, we evaluate climate model results that have been constrained with proxy-based temperatures from the North Atlantic region. We find that both the temperature and the hydroclimate response have a clear global signature. A marked cooling is simulated over the North Atlantic Ocean (more than 5 °C) and the downwind continents (2–4 °C). This response is related to the weakening of the Atlantic meridional overturning circulation under influence of meltwater discharges. The hydroclimate response is most expressed over Eurasia in a belt between 40 and 60°N, and over Northern Africa in the Sahel region. In both areas, a strong decrease in soil moisture is simulated (up to 20% reduction). In contrast, a striking increase in moisture is found over southeastern North America (15% increase), where southerly atmospheric flow brings moist air to the continent. Outside these areas that are clearly affected by the cold North Atlantic Ocean, the responses of temperature and moisture are decoupled, with different causes for these temperature and hydroclimate responses. In the tropics, the hydroclimate response is governed by the southward shift of the intertropical convergence zone (ITCZ) due to the cooling of the North Atlantic Ocean. This causes drier conditions north of the equator and wetter conditions in the Southern Hemisphere tropics. The associated changes in soil moisture are relatively gradual here, taking up to two centuries to complete, suggesting that the impact of the ITCZ shift on the tropical hydroclimate is building up. Our experiment indicates that Southern Hemisphere continents experienced a small cooling (less than 0.5 °C) during the Younger Dryas, caused by the negative radiative forcing associated with reduced atmospheric methane concentrations and enhanced dust levels. In our simulation, the bi-polar seesaw mechanism is relatively weak, so that the associated warming of the South Atlantic Ocean is not overwhelming the reduction in radiative forcing. Our results thus indicate that in the tropics and/or Southern Hemisphere, the cooling is a response to the negative radiative forcing, while the hydroclimatic changes are predominantly resulting from ITCZ variations. Consequently, when interpreting hydroclimatic proxy records from these regions, data should not be compared directly to key records from high latitudes, such as Greenland ice core stable isotope records.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-14
    Description: Though primarily driven by insolation changes associated with well-known variations in Earth's astronomical parameters, the response of the climate system during interglacials includes a diversity of feedbacks involving the atmosphere, ocean, sea ice, vegetation and land ice. A thorough multi-model-data comparison is essential to assess the ability of climate models to resolve interglacial temperature trends and to help in understanding the recorded climatic signal and the underlying climate dynamics. We present the first multi-model-data comparison of transient millennial-scale temperature changes through two intervals of the Present Interglacial (PIG; 8–1.2 ka) and the Last Interglacial (LIG; 123–116.2 ka) periods. We include temperature trends simulated by 9 different climate models, alkenone-based temperature reconstructions from 117 globally distributed locations (about 45% of them within the LIG) and 12 ice-core-based temperature trends from Greenland and Antarctica (50% of them within the LIG). The definitions of these specific interglacial intervals enable a consistent inter-comparison of the two intervals because both are characterised by minor changes in atmospheric greenhouse gas concentrations and more importantly by insolation trends that show clear similarities. Our analysis shows that in general the reconstructed PIG and LIG Northern Hemisphere mid-to-high latitude cooling compares well with multi-model, mean-temperature trends for the warmest months and that these cooling trends reflect a linear response to the warmest-month insolation decrease over the interglacial intervals. The most notable exception is the strong LIG cooling trend reconstructed from Greenland ice cores that is not simulated by any of the models. A striking model-data mismatch is found for both the PIG and the LIG over large parts of the mid-to-high latitudes of the Southern Hemisphere where the data depicts negative temperature trends that are not in agreement with near zero trends in the simulations. In this area, the positive local summer insolation trend is counteracted in climate models by an enhancement of the Southern Ocean summer sea-ice cover and/or an increase in Southern Ocean upwelling. If the general picture emerging from reconstructions is realistic, then the model-data mismatch in mid and high Southern Hemisphere latitudes implies that none of the models is able to resolve the correct balance of these feedbacks, or, alternatively, that interglacial Southern Hemisphere temperature trends are driven by mechanisms which are not included in the transient simulations, such as changes in the Antarctic ice sheet or meltwater-induced changes in the overturning circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: Temperature changes in Antarctica over the last millennium are investigated using proxy records, a set of simulations driven by natural and anthropogenic forcings and one simulation with data assimilation. Over Antarctica, a long term cooling trend in annual mean is simulated during the period 1000-1850. The main contributor to this cooling trend is the volcanic forcing, astronomical forcing playing a dominant role at seasonal timescale. Since 1850, all the models produce an Antarctic warming in response to the increase in greenhouse gas concentrations. We present a composite of Antarctic temperature, calculated by averaging seven temperature records derived from isotope measurements in ice cores. This simple approach is supported by the coherency displayed between model results at these data grid points and Antarctic mean temperature. The composite shows a weak multi-centennial cooling trend during the pre-industrial period and a warming after 1850 that is broadly consistent with model results. In both data and simulations, large regional variations are superimposed on this common signal, at decadal to centennial timescales. The model results appear spatially more consistent than ice core records. We conclude that more records are needed to resolve the complex spatial distribution of Antarctic temperature variations during the last millennium.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-25
    Description: The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...