GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2019-09-23
    Description: The upper ocean circulation of the Pacific and Indian Oceans is connected through both the Indonesian Throughflow north of Australia and the Tasman leakage around its south. The relative importance of these two pathways is examined using virtual Lagrangian particles in a high-resolution nested ocean model. The unprecedented combination of a long integration time within an eddy-permitting ocean model simulation allows the first assessment of the interannual variability of these pathways in a realistic setting. The mean Indonesian Throughflow, as diagnosed by the particles, is 14.3 Sv, considerably higher than the diagnosed average Tasman leakage of 4.2 Sv. The time series of Indonesian Throughflow agrees well with the Eulerian transport through the major Indonesian Passages, validating the Lagrangian approach using transport-tagged particles. While the Indonesian Throughflow is mainly associated with upper ocean pathways, the Tasman leakage is concentrated in the 400–900 m depth range at subtropical latitudes. Over the effective period considered (1968–1994), no apparent relationship is found between the Tasman leakage and Indonesian Throughflow. However, the Indonesian Throughflow transport correlates with ENSO. During strong La Niñas, more water of Southern Hemisphere origin flows through Makassar, Moluccas, Ombai, and Timor Straits, but less through Moluccas Strait. In general, each strait responds differently to ENSO, highlighting the complex nature of the ENSO-ITF interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (11). pp. 7772-7793.
    Publication Date: 2019-09-23
    Description: The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along 47 degrees N (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma=27.68 kg m(-3) in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-04
    Description: Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (24). pp. 8926-8934.
    Publication Date: 2019-09-23
    Description: Previous studies found a negative trend in oxygen concentrations in tropical regions during the last decades. Employing a biogeochemical circulation model, we highlight the importance of wind driven ocean transport associated with the Subtropical-Tropical Cells (STCs) in setting the oxygen levels in the tropical ocean. The observed and simulated slowdown of the STCs by 30 percent from the 1960s to the 1990s caused a decrease in oxygen transport to the tropics. Transport of phosphate was similarly reduced, decreasing export production and respiration. The effects of physical transport and biological consumption partly compensate, damping oxygen interannual and decadal variability. Our results suggest that the observed residual oxygen trend in the tropical Pacific is mainly driven by changes in oxygen transport. Accordingly, the observed recent strengthening of the STCs leads us to expect a pause in the oxygen decrease or even an increase of tropical Pacific oxygen values in the near future.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 43 . pp. 4517-4523.
    Publication Date: 2019-02-26
    Description: The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to inter-annual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here, the multi-decadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 sec-2 decade-1. In the western Atlantic EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multi-decadal trends are close to zero. The non-uniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 42 (21). pp. 9379-9386.
    Publication Date: 2020-11-04
    Description: A global ocean model with 1/12∘ horizontal resolution is used to assess the seasonal cycle of surface Eddy Kinetic Energy (EKE). The model reproduces the salient features of the observed mean surface EKE, including amplitude and phase of its seasonal cycle in most parts of the ocean. In all subtropical gyres of the Pacific and Atlantic, EKE peaks in summer down to a depth of ∼350 m, below which the seasonal cycle is weak. Investigation of the possible driving mechanisms reveals the seasonal changes in the thermal interactions with the atmosphere to be the most likely cause of the summer maximum of EKE. The development of the seasonal thermocline in spring and summer is accompanied by stronger mesoscale variations in the horizontal temperature gradients near the surface which corresponds, by thermal wind balance, to an intensification of mesoscale velocity anomalies towards the surface.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (12). pp. 3346-3363.
    Publication Date: 2020-08-04
    Description: Experiments with a suite of North Atlantic general circulation models are used to examine the sources of eddy kinetic energy (EKE) in the Labrador Sea. A high-resolution model version (112°) quantitatively reproduces the observed signature. A particular feature of the EKE in the Labrador Sea is its pronounced seasonal cycle, with a maximum intensity in early winter, as already found in earlier studies based on altimeter data. In contrast to a previously advanced hypothesis, the seasonally varying eddy field is not related to a forcing by high-frequency wind variations but can be explained by a seasonally modulated instability of the West Greenland Current (WGC). The main source of EKE in the Labrador Sea is an energy transfer due to Reynolds interaction work (barotropic instability) in a confined region near Cape Desolation where the WGC adjusts to a change in the topographic slope: Geostrophic contours tend to converge upstream of Cape Desolation, such that the topographically guided WGC narrows as well and becomes barotropically unstable. The eddies spawned from the WGC instability area, dominating the EKE in the interior Labrador Sea, are predominantly anticyclonic with warm and saline cores in the upper kilometer of the water column, while the few cyclones originating as well from the instability area show a more depth-independent structure. Companion experiments with a ⅓° model exhibit the strength of the WGC, influenced by either changes in the wind stress or heat flux forcing, as a leading factor determining seasonal to interannual changes of EKE in the Labrador Sea
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 19 . pp. 77-97.
    Publication Date: 2018-04-05
    Description: We report a study of a coastal frontal zone of the southeastern United States based on a field experiment and numerical modeling. The study was conducted in the spring of 1985 during weak to moderate wind stress and strong input of buoyancy from solar radiation and river discharge. The study confirms that the structure and slope of the frontal zone depends on a combination of wind stress and cross-shelf advection of buoyancy. A cross-shelf/depth two-dimensional (x, y), time-dependent numerical model illustrated the response of the frontal zone to the local wind stress regimes. A comparison of model results with field data showed that the model successfully predicted onsets of stratification and mixing. When alongshore wind stress was negative (southward), isopycnals in the frontal zone steepened due to a combination of horizontal advection and vertical convection. When stress was positive (northward), the offshore advection of low density water flattened the isopycnals and potential energy decreased, demonstrating that horizontal advection terms are important in the equation of conservation of buoyancy. The model predicts die offshore advection of lenses of less dense water during upwelling-favorable wind stress. These lenses are of the order of 20 km in cross-shelf scale and represent an efficient mechanism to export nearshore water. The lenses consist of a mixture of low-salinity coastal water and continental shelf water originating further offshore and advected onshore along the bottom. The mean flow inside the frontal zone opposed the mean alongshore wind stress. Part of the alongshore flow was in geostrophy with the cross-shore pressure gradient; the other part was due to an alongshore pressure gradient force (kinematic) of about 1 × 10−6 m s−2 (equivalent sea surface slope = 1 × 10−7), which was trapped along the coast with an offshore width scale of O(10 km). It is likely that the alongshore extent of this pressure gradient was governed by the scale at which freshwater is injected to the continental shelf, i.e., 20–30 km. The pressure gradient force immediately outside of the frontal zone was about −5 × 10−7 m s−2 in the direction of the mean alongshore wind stress. It is hypothesized that, as a result of wind setup and freshwater influx, the northward pressure gradient forced over outer shelf/slope by the Gulf Stream decreases in magnitude onshore, and can even change sign across a nearshore frontal zone of O(10 km). The implied flow field near the frontal zone is therefore highly three-dimensional with |∂v/∂y|≈|∂u/∂x|, where (u, v) are velocities in the cross-shore (x) and alongshore (y) directions, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 21 . pp. 1271-1289.
    Publication Date: 2020-08-04
    Description: A high-resolution model of the wind-driven and thermohaline circulation in the North and equatorial Atlantic Ocean is used to study the structure and variability of the boundary current system at 26°N, including the Florida Current, the Antilles Current, and the Deep Western Boundary Current (DWBC). The model was developed by Bryan and Holland as a Community Modeling Effort of the World Ocean Circulation Experiment. Subsequent experiments have been performed at IfM Kiel, with different friction coefficients, and different climatologies of monthly mean wind stress: Hellerman–Rosenstein (HR) and Isemer–Hasse (IH). The southward volume transports in the upper 1000 m of the interior Atlantic, at 26°N, are 25.0 Sv (Sv ≡ 106m3s−1) for HR, and 34.9 Sv for IH forcing, in good agreement with the transport from the integrated Sverdrup balance at this latitude (23.9 Sv for HR, 35.6 Sv for IH). The return flow of this wind-driven transport, plus the southward transport of the DWBC (6–8 Sv), is partitioned between the Florida Current and Antilles Current. With HR forcing, the transport through the Straits of Florida is 23.2 Sv; this increases to 29.1 Sv when the wind stresses of IH are used. The annual variation of the simulated Florida Current is very similar to previous, coarse-resolution models when using the same wind-stress climatology (HR); the annual range (3.4 Sv) obtained with HR forcing is strongly enhanced (6.3 Sv) with IH forcing. The meridional heat transport at 26°N, zonally integrated across the basin, is in phase with the Florida Current; its annual range increases from 0.44 PW (HR) to 0.80 PW (IH). The annual signal east of the Bahamas is masked by strong transport fluctuations on a time scale of O(100 days), caused by an instability of the Antilles Current. By averaging over several model years, an annual cycle is extracted, which is in phase with the wind stress curl over the western part of the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...