GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H; Juricke, Stephan; Jung, Thomas (2017): A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates. Journal of Geophysical Research: Oceans, 21 pp, https://doi.org/10.1002/2016JC012513
    Publication Date: 2023-05-12
    Description: We present four melt climatology estimates based on a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. The climatology estimates based on simulations of small (SMA), 'small-to-medium'-sized (MED12 & MED123), and small-to-giant icebergs (ALL) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. The four monthly melt climatologies [mm/day] are available as netCDF files with 1°x1° spatial resolution and can be used, e.g., for sensitivity studies with uncoupled sea ice-ocean models, or as spatio-temporal templates for the redistribution of land ice from the Antarctic ice sheet over the Southern Ocean in climate models.
    Keywords: File content; File format; File name; File size; pan-Antarctica; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-13
    Description: This bibliography unites the individual data collected by different types of autonomous platforms deployed during MOSAiC in 2019/2020.
    Keywords: Atmosphere; autonomous platform; distributed network; drift; MOSAiC; MOSAiC_ATMOS; MOSAiC_ICE; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oceans; Sea ice; snow
    Type: Dataset
    Format: 71 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-14
    Description: The fifth Workshop on Systematic Errors (WSE) in weather and climate models was hosted by Environment and Climate Change Canada (ECCC) on under the auspices of the Working Group on Numerical Experimentation (WGNE), jointly sponsored by the Commission of Atmospheric Sciences of the World Meteorological Organization (WMO) and the World Climate Research Programme (WCRP). This major event welcomed over 200 scientists from the weather and climate communities. The workshop primary goal was to increase the understanding of the nature and cause of systematic errors in numerical models across timescales. Out of 240 abstracts submitted to the workshop, 48 talks and 132 posters were presented.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Journal of Climate, AMER METEOROLOGICAL SOC, 26(11), pp. 3785-3802, ISSN: 0894-8755
    Publication Date: 2019-07-17
    Description: The ice strength parameter P* is a key parameter in dynamic/thermodynamic sea ice models that cannot be measured directly. Stochastically perturbing P* in the Finite Element Sea Ice–Ocean Model (FESOM) of the Alfred Wegener Institute aims at investigating the effect of uncertainty pertaining to this parameterization. Three different approaches using symmetric perturbations have been applied: 1) reassignment of uncorrelated noise fields to perturb P* at every grid point, 2) a Markov chain time correlation, and 3) a Markov chain time correlation with some spatial correlation between nodes. Despite symmetric perturbations, results show an increase of Arctic sea ice volume and a decrease of Arctic sea ice area for all three approaches. In particular, the introduction of spatial correlation leads to a substantial increase in sea ice volume and mean thickness. The strongest response can be seen for multiyear ice north of the Greenland coast. An ensemble of eight perturbed simulations generates a spread in the multiyear ice comparable to the interannual variability of the model. Results cannot be reproduced by a simple constant global modification of P*.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...