GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (21)
  • Max-Planck-Institut für Meteorologie  (1)
Document type
Years
  • 1
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: We investigate the synoptic precursors to the Harmattan wind and dust frontogenesis during the high impact Saharan dust outbreak over the Cape Verde Islands on 13 November 2017. We employ multiscale observations and the Weather Research and Forecasting model Coupled with Chemistry simulations. The analyses indicate that the dust storm was initiated on the lee side of the Saharan Atlas Mountains (SAM) in Algeria on 10 November 2017. This dust storm was associated with a double Rossby wave break linked through nonlinear wave reflection. Two successive Rossby wave breaks contributed to the wave amplification over the Eastern North Atlantic Ocean which transported large magnitude potential vorticity air into the North African continent. The resulting coupled pressure surge was associated with cold air advected equatorward over the SAM which organized the strong near-surface wind that ablated the dust. The simulation results indicate that the dust front was initially related to a density current-like cold front which formed due to the downslope transport of cold airflow over the SAM and then triggered undular bores on the lee side. Each bore perturbed the dust loading and then the subsequent diurnal heating generated differential planetary boundary layer turbulence kinetic energy strengthening the dust frontogenesis. Dust became confined behind the cold surge and interacted with the daytime Saharan planetary boundary layer leading to increased dust loading, while the dust front propagated equatorward. Two distinct dust plumes arrived successively at low levels at Mindelo, Cape Verde Islands: (1) from the coasts of Mauritania and Senegal and (2) from the SAM southern flank.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-24
    Description: Solar radiation received at the Earth's surface (Rs) is comprised of two components, the direct radiation (Rd) and the diffuse radiation (Rf). Rd, the direct beam from the sun, is essential for concentrated solar power generation. Rf, scattered by atmospheric molecules, aerosols, or cloud droplets, has a fertilization effect on plant photosynthesis. But how Rd and Rf change diurnally is largely unknown owing to the lack of long-term measurements. Taking advantage of 22 years of homogeneous hourly surface observations over China, this study documents the climatological means and evolutions in the diurnal cycles of Rd and Rf since 1993, with an emphasis on their implications for solar power and agricultural production. Over the solar energy resource region, we observe a loss of Rd which is relatively large near sunrise and sunset at low solar elevation angles when the sunrays pass through the atmosphere on a longer pathway. However, the concentrated Rd energy covering an average 10-hr period around noon during a day is relatively unaffected. Over the agricultural crop resource region, the large amounts of clouds and aerosols scattering more of the incoming light result in Rf taking the main proportion of Rs during the whole day. Rf resources and their fertilization effect in the main crop region of China further enhances since 1993 over almost all hours of the day. Key Points: - The loss of direct radiation over China since 1993 is relatively large at sunrise and sunset with little effect on solar power generation - The diffuse component dominates solar radiation normally near sunrise and sunset, but for the whole day over the main sown area of China - The diffuse fraction is further enhanced in the main sown area of China over almost all hours of the day since 1993
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-03
    Description: Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission. Key Points: - Thermal wind imbalance in the exit region of the jet streak resulted in a mesoscale jetlet in the lee of the mountains - Thermally direct transverse ageostrophic circulation in the exit region of the jetlet led to the upward motion and adiabatic expansion - Low-level pressure rise generated the ageostrophic isallobaric wind that advected cold air toward the thermally induced low pressure area
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-03
    Description: ICON-A is the new icosahedral nonhydrostatic (ICON) atmospheric general circulation model in a configuration using the Max Planck Institute physics package, which originates from the ECHAM6 general circulation model, and has been adapted to account for the changed dynamical core framework. The coupling scheme between dynamics and physics employs a sequential updating by dynamics and physics, and a fixed sequence of the physical processes similar to ECHAM6. To allow a meaningful initial comparison between ICON-A and the established ECHAM6-LR model, a setup with similar, low resolution in terms of number of grid points and levels is chosen. The ICON-A model is tuned on the base of the Atmospheric Model Intercomparison Project (AMIP) experiment aiming primarily at a well balanced top-of atmosphere energy budget to make the model suitable for coupled climate and Earth system modeling. The tuning addresses first the moisture and cloud distribution to achieve the top-of-atmosphere energy balance, followed by the tuning of the parameterized dynamic drag aiming at reduced wind errors in the troposphere. The resulting version of ICON-A has overall biases, which are comparable to those of ECHAM6. Problematic specific biases remain in the vertical distribution of clouds and in the stratospheric circulation, where the winter vortices are too weak. Biases in precipitable water and tropospheric temperature are, however, reduced compared to the ECHAM6. ICON-A will serve as the basis of further development and as the atmosphere component to the coupled model, ICON-Earth system model (ESM). Key Points: - Physics package for climate modeling is coupled to a nonhydrostatic dynamical core - Tuning in five steps to obtain a balanced net radiation at top of atmosphere - Overall biases of ICON-A are comparable to ECHAM6.3, but circulation biases remain due to problems with parameterized drag
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-03
    Description: Dust aerosol is important in the Earth system, but the relative impact of meteorological mechanisms on North African dust emission remains unclear. This study presents the first climatology of dust emission amounts associated with Harmattan surges (HSs), characterized by postfrontal strengthening of near-surface winds. A new automated identification uses their strong isallobaric winds as an indicator for HSs in 32 years of ERA-Interim reanalysis. Their impact on dust aerosol emission is estimated by combining the identified events with derived dust emissions. The estimate highlights that about one third of the total emission mass is associated with HSs. Spring shows the largest associated emissions of 30–50% of the monthly totals consistent with the largest number and duration of HSs. Regional emission contributions of up to 80% in the north coincide with the overall largest emission maxima in spring. The importance of HSs for dust emission implies that aerosol-climate models need to accurately represent synoptic-scale storms. Key Points: - First climatology of North African dust emission mass linked with Harmattan surges (HSs) - One third of total emission linked to HSs annually and spatially averaged - Regionally up to 80% of springtime maximum in emission mass is associated with HSs
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-03
    Description: We performed detailed mesoscale observational analyses and Weather Research and Forecasting (WRF) model simulations to study the terrain-induced downslope winds that generated dust-emitting winds at the beginning of three strong subtropical dust storms in three distinctly different regions of North Africa and the Arabian Peninsula. We revisit the Harmattan dust storm of 2 March 2004, the Saudi dust storm of 9 March 2009, and the Bodélé Depression dust storm of 8 December 2011 and use high-resolution WRF modeling to assess the dynamical processes during the onset of the storms in more depth. Our results highlight the generation of terrain-induced downslope winds in response to the transition of the atmospheric flow from a subcritical to supercritical state in all three cases. These events precede the unbalanced adjustment processes in the lee of the mountain ranges that produced larger-scale dust aerosol mobilization and transport. We see that only the higher-resolution data sets can resolve the mesoscale processes, which are mainly responsible for creating strong low-level terrain-induced downslope winds leading to the initial dust storms. Key Points: - Downslope winds resulted in strong low-level vertical wind shear, which interacted with the development of near-surface positively buoyant air during the morning and generated significant turbulence kinetic energy - The strong and gusty winds caused moderate meso-γ- to β-scale dust storms as an early stage of precursor to later severe dust storms that affected large areas
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-03
    Description: Despite efforts to accurately quantify the effective radiative forcing (ERF) of anthropogenic aerosol, the historical evolution of ERF remains uncertain. As a further step toward a better understanding of ERF uncertainty, the present study systematically investigates the sensitivity of the shortwave ERF at the top of the atmosphere to model-internal variability and spatial distributions of the monthly mean radiative effects of anthropogenic aerosol. For this, ensembles are generated with the atmospheric model ECHAM6.3 that uses monthly prescribed optical properties and changes in cloud-droplet number concentrations designed to mimic that associated with the anthropogenic aerosol using the new parameterization MACv2-SP. The results foremost highlight the small change in our best estimate of the global averaged all-sky ERF associated with a substantially different pattern of anthropogenic aerosol radiative effects from the mid-1970s (–0.51 Wm–2) and present day (–0.50 Wm–2). Such a small change in ERF is difficult to detect when model-internal year-to-year variability (0.32 Wm–2 standard deviation) is considered. A stable estimate of all-sky ERF requires ensemble simulations, the size of which depends on the targeted precision, confidence level, and the magnitude of model-internal variability. A larger effect of the pattern of the anthropogenic aerosol radiative effects on the globally averaged all-sky ERF (15%) occurs with a strong Twomey effect through lowering the background aerosol optical depth in regions downstream of major pollution sources. It suggests that models with strong aerosol-cloud interactions could show a moderate difference in the global mean ERF associated with the mid-1970s to present-day change in the anthropogenic aerosol pattern. Key Points: - Ensembles of atmosphere-only experiments with MACv2-SP allow a sensitivity assessment of instantaneous and effective radiative forcing (ERF) - Global mean all-sky ERFs with aerosol patterns of mid-1970s and today difficult to distinguish, when atmospheric variability considered - A moderate pattern effect on ERF could occur in models with presumably strong aerosol-cloud interaction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-03
    Description: We evaluate the new icosahedral nonhydrostatic atmospheric (ICON-A) general circulation model of the Max Planck Institute for Meteorology that is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers. A simulation with ICON-A at a low resolution (160 km) is compared to a not-tuned fourfold higher-resolution simulation (40 km). Simulations using the last release of the ECHAM climate model (ECHAM6.3) are also presented at two different resolutions. The ICON-A simulations provide a compelling representation of the climate and its variability. The climate of the low-resolution ICON-A is even slightly better than that of ECHAM6.3. Improvements are obtained in aspects that are sensitive to the representation of orography, including the representation of cloud fields over eastern-boundary currents, the latitudinal distribution of cloud top heights, and the spatial distribution of convection over the Indian Ocean and the Maritime Continent. Precipitation over land is enhanced, in particular at high-resolution ICON-A. The response of precipitation to El Niño sea surface temperature variability is close to observations, particularly over the eastern Indian Ocean. Some parameterization changes lead to improvements, for example, with respect to rain intensities and the representation of equatorial waves, but also imply a warmer troposphere, which we suggest leads to an unrealistic poleward mass shift. Many biases familiar to ECHAM6.3 are also evident in ICON-A, namely, a too zonal SPCZ, an inadequate representation of north hemispheric blocking, and a relatively poor representation of tropical intraseasonal variability. Key Points: - Article presents evaluation of atmosphere component of new ICON Earth system model - The new MPI atmospheric ICON-A model partly outperforms ECHAM6.3 - ICON-A is flexible to be run at grid spacings from a few tens of meters to hundreds of kilometers
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...